

Unique Oncolytic Virus Therapies for Multiple Solid Tumors

January 2026

FORWARD LOOKING STATEMENTS

This presentation contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. In some cases forward-looking statements can be identified by terminology such as "may," "should," "potential," "continue," "expects," "anticipates," "intends," "plans," "believes," "estimates," and similar expressions, and include statements regarding oncolytic viruses (OVs) being promising cancer therapeutics; the multiple potential value opportunities for VCN-01; the regulatory status expected to facilitate VCN-01 development; potential access to a priority review voucher; the therapeutic potential of VCN-01 and other Theriva OVs; the ability of VCN-01 and other Theriva OVs to overcome key OV challenges; the potential of VCN-01 to enable immuno-oncology therapies in refractory tumors; the clinical advancement of VCN-01 and other Theriva OVs in diverse cancer indications (including pancreatic ductal adenocarcinoma, head and neck cancer, ovarian cancer, colorectal cancer, and retinoblastoma) and the projected milestones. Important factors that could cause actual results to differ materially from current expectations include, among others, the Company's ability to enroll patients as planned and reach clinical trial milestones when anticipated; the Company's ability to complete clinical trials on time and achieve the desired results and benefits; the Company's product candidates demonstrating safety and effectiveness, including positive clinical data that demonstrates VCN-01 may lead to improved clinical outcomes for patients; the Company's ability to obtain regulatory approval for commercialization of product candidates or to comply with ongoing regulatory requirements; regulatory limitations relating to the Company's ability to promote or commercialize their product candidates for the specific indications; acceptance of product candidates in the marketplace and the successful development, marketing or sale of the Company's products; developments by competitors that render such products obsolete or non-competitive; the Company's ability to maintain license agreements; the continued maintenance and growth of the Company's patent estate; the ability to continue to remain well financed; and other factors described in the Company's Annual Report on Form 10-K for the year ended December 31, 2024 and its other filings with the SEC, including subsequent periodic reports on Forms 10-Q and current reports on Form 8-K. The information in this release is provided only as of the date of this release, and Theriva Biologics undertakes no obligation to update any forward-looking statements contained in this release on account of new information, future events, or otherwise, except as required by law.

OVERVIEW

- **VCN-01** lead candidate undergoing **Phase 3** clinical trial preparation¹
 - First-line metastatic pancreatic cancer
 - Retinoblastoma (rare pediatric disease)
- **VCN-01** Phase 1 clinical data support potential in additional indications²
- **VCN-X** innovative discovery engine developing a distinct product pipeline of oncolytic viruses
- **Seeking** financing and/or partnerships to execute planned pivotal trial programs

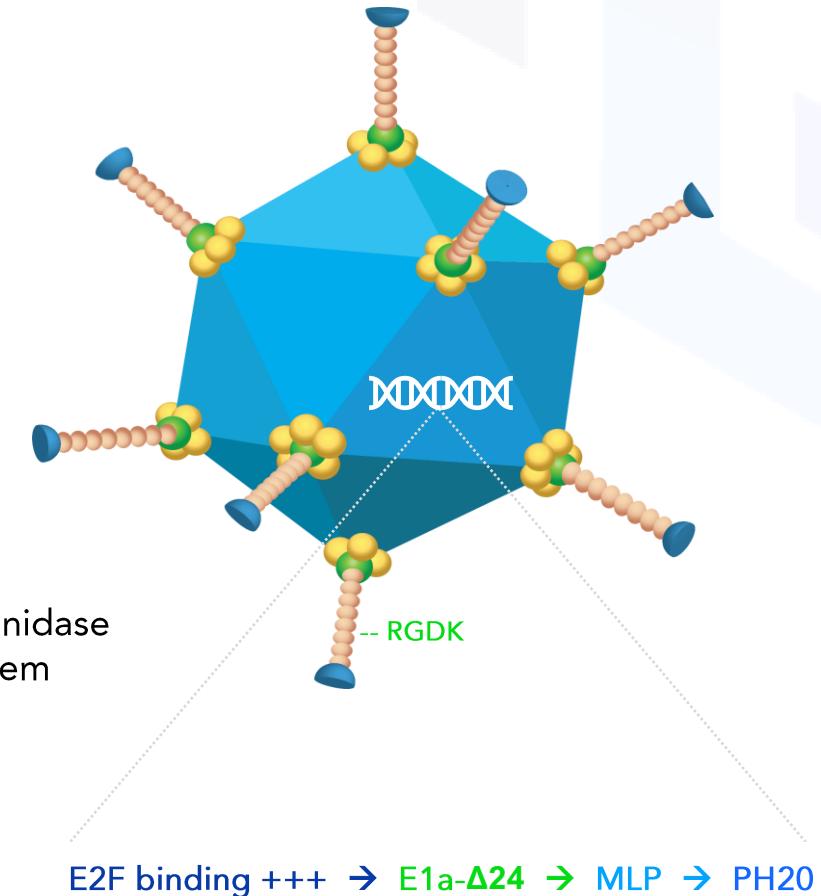
Financial Snapshot

Exchange	NYSE American
Ticker	TOVX
Cash (10Nov2025)	\$15.5M
Projected cash runway	Q1 2027
Average Daily Volume (3M)	18.75M ³
Locations	Rockville, MD Barcelona, Spain

VCN-01 IS A UNIQUELY ENGINEERED HUMAN ADENOVIRUS 5

Designed to have multiple anti-tumor actions

Systemic

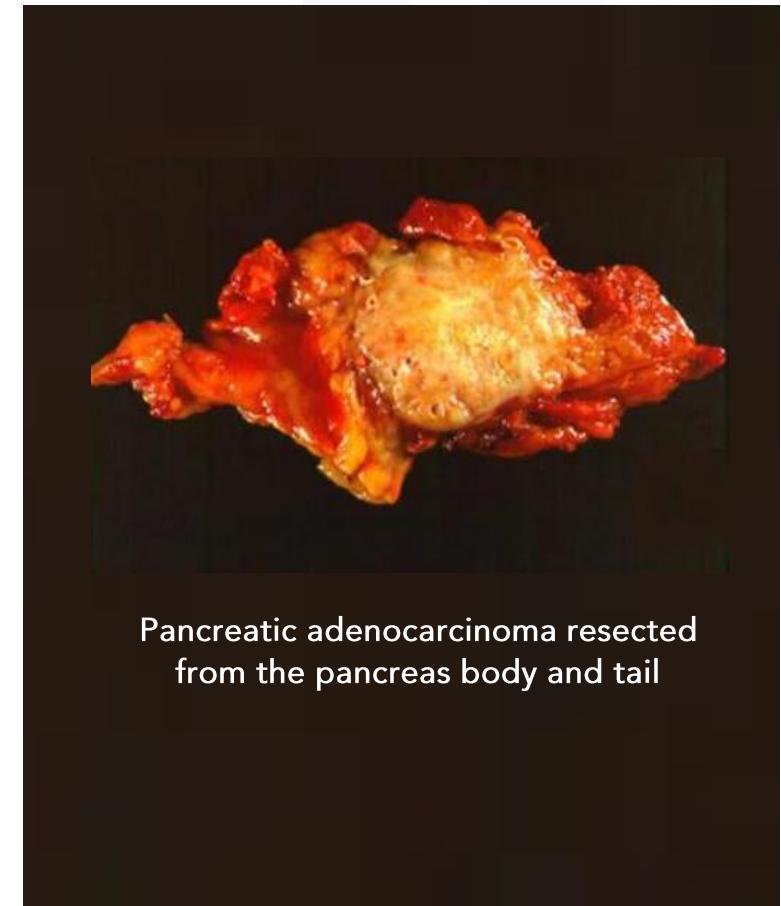

VCN-01 targets both **primary** and **metastatic** lesions

Selective

Virus replicates only in **tumor** cells
Liver detargeted

Stroma Degrading

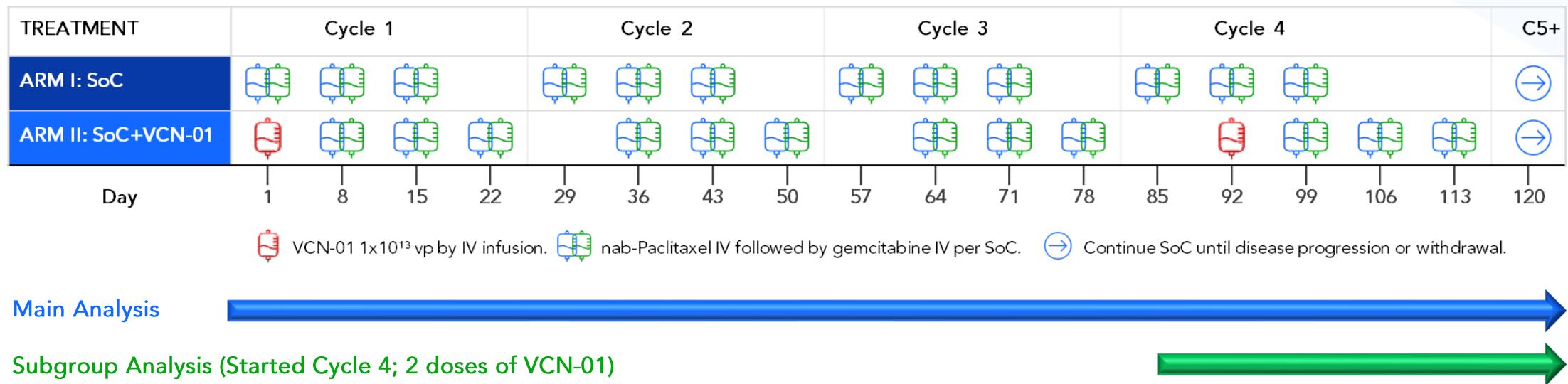
Replicating virus expresses **PH20** hyaluronidase
Exposes solid tumors to the immune system
and diverse co-administered therapies


THERIVA PIPELINE

Candidate	Target	Pre-IND	Phase 1	Phase 2	Phase 3	Sites	Status*
VCN-01 Selective, Stroma Degrading OV	Pancreatic Cancer (IV) with gemcitabine/nab-paclitaxel					Multicenter Spain, USA	Preparing Phase 3 Orphan Drug Designation US, EU Fast Track Designation US
	Retinoblastoma (IVit)					Sant Joan de Déu HOSPITAL MATERNOINFANTIL UNIVERSITAT DE BARCELONA	Planning Phase 2/3 Orphan Drug Designation US, EU Rare Pediatric Disease Designation US
	HNSCC (IV) + durvalumab					ICO Institut Català d'Oncologia	Phase 1 Complete
	Brain tumors (IV)					LEEDS	Phase 1 On-going
VCN-X and Albumin Shield OV ^s	Solid tumors (IV)					ICO Institut Català d'C IDI BELL Institut d'Investigació Biològica de Bellvitge	Preclinical Studies On-going
SYN-004 ^[1] Oral β -lactamase	Prevention of aGVHD in allo-HCT					Washington University in St. Louis	Phase 1b/2a On-going
SYN-020 ^[2] Oral IAP	Multiple potential GI and metabolic indications						Phase 1 Studies Complete

VCN-01 LEAD INDICATION PANCREATIC CANCER

Highly fatal cancer protected by dense tumor stroma


- Orphan disease, highest mortality of all solid tumors
 - Median survival 8-11 months for metastatic disease^{1,2}
 - USA est. 67,440 new cases and 51,980 deaths in 2025³
- **Hyaluronic acid** in stroma is associated with reduced treatment efficacy and poor prognosis⁴
 - VCN-01 designed to degrade hyaluronic acid
- Incidence is growing worldwide
 - Est. treatment market ~\$2.9B (2024) ~\$6.0B (2030)⁵

VIRAGE PANCREATIC CANCER PHASE 2B CLINICAL TRIAL

Multicenter, open-label, randomized, controlled trial (NCT05673811)

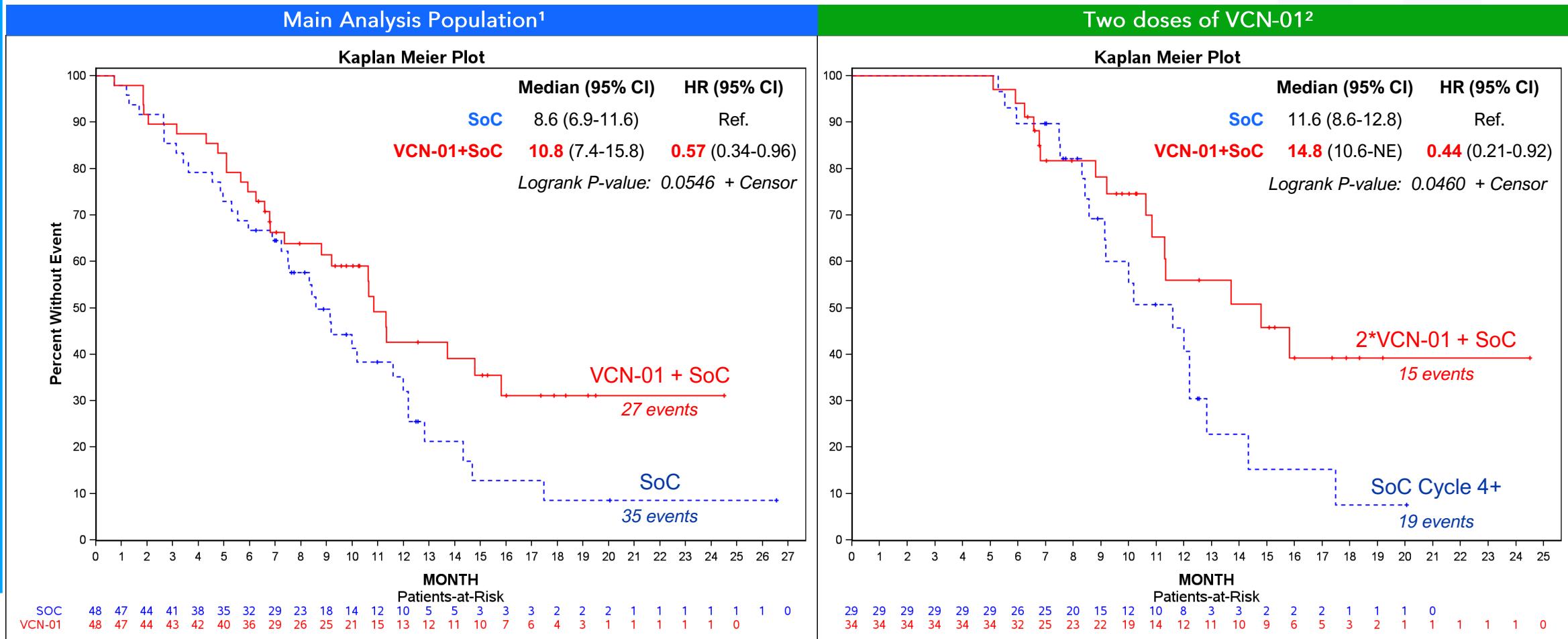
- Patients with newly-diagnosed metastatic pancreatic ductal adenocarcinoma (first line)
- Primary endpoints overall survival, VCN-01 AE profile and tolerability
- Secondary endpoints included progression free survival, duration of response

VIRAGE PHASE 2B TRIAL KEY FINDINGS

Data provide strong support for Phase 3 trial

- Enrolled a “real world” population of older and more fragile patients
- Increased overall and progression free survival (OS, PFS) and duration of response (DoR) observed in VCN-01 plus gemcitabine/nab-paclitaxel SoC treatment group compared to SoC alone
 - Additional survival benefit observed in patients receiving two doses VCN-01
 - Greater improvements at later timepoints consistent with immune MOA
- Acceptable AE profile consistent with prior VCN-01 clinical trials
- Better hazard ratios for OS, PFS, DoR vs gemcitabine/nab-paclitaxel than reported in NALIRIFOX Phase 3 trial¹

VIRAGE DEMOGRAPHICS

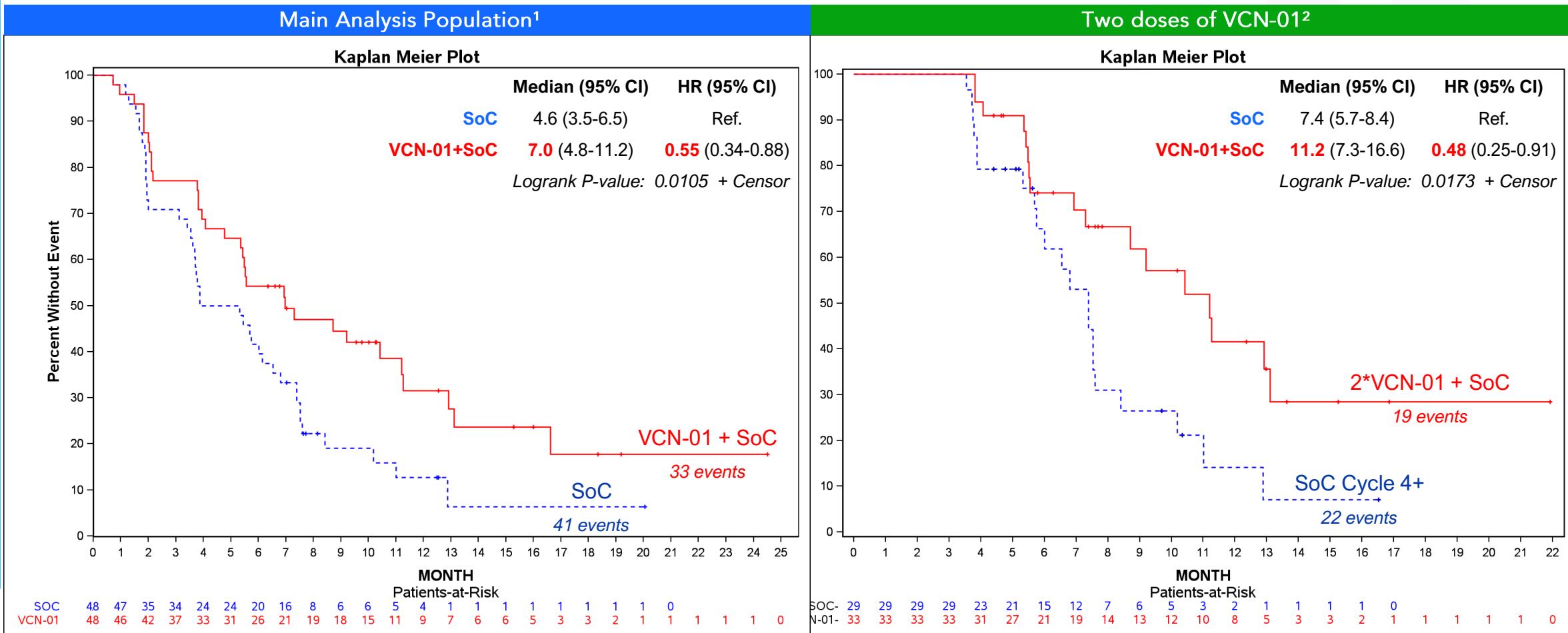

Parameter	Statistics	Main Analysis (FAS) ¹		Subgroup Analysis (Two Doses VCN-01) ²	
		SoC	VCN-01 + SoC	SoC C4+	2*VCN-01 + SoC
No. Patients (% of cohort)	n (%)	48	48	29 (60.4)	34 (70.8)
Age (years)	Mean (SD)	69.5 (8.25)	66.0 (8.97)	68.1 (8.31)	65.8 (9.71)
	Median	68.5	66.0	66.0	66.0
<65 yrs	n (%)	10 (20.8)	18 (37.5)	8 (27.6)	13 (38.2)
≥65 yrs	n (%)	38 (79.2)	30 (62.5)	21 (72.4)	21 (61.8)
Gender					
	Male	n (%)	22 (45.8)	23 (47.9)	13 (44.8)
	Female	n (%)	26 (54.2)	25 (52.1)	16 (55.2)
ECOG at randomization					
0	n (%)	17 (35.4)	19 (39.6)	14 (48.3)	15 (44.1)
1	n (%)	31 (64.6)	29 (60.4)	15 (51.7)	19 (55.9)
ECOG at Cycle 4					
0	n (%)	6 (20.7)	14 (41.2)
1	n (%)	23 (79.3)	19 (55.9)
2	n (%)	1 (2.9)

¹Full Analysis Set (FAS) patients received at least 1 dose of gemcitabine/nab-paclitaxel (SoC) in each arm.

²Compares patients in ARM II who received a second dose of VCN-01 followed 1-week later by cycle 4 of SoC to patients in ARM I who started cycle 4 of SoC (C4+). These patients were not preselected for inclusion in subgroup analysis; anyone who reached cycle 4 was included.

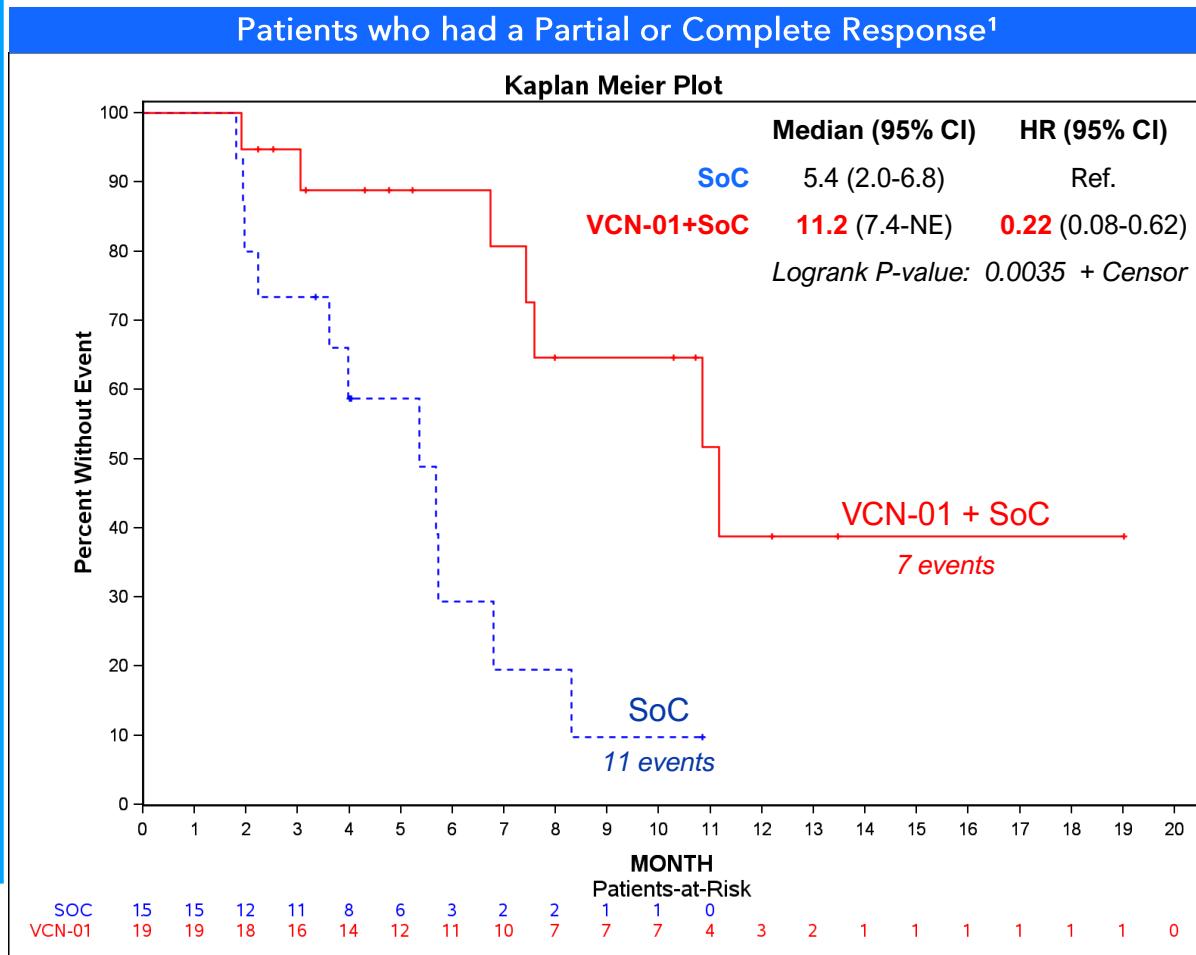
INCREASED OVERALL SURVIVAL IN VCN-01+SOC ARM

Greater OS improvement with two VCN-01 doses



¹Full Analysis Set (FAS) compares patients who received at least 1 dose of gemcitabine/nab-paclitaxel (SoC) in each arm.

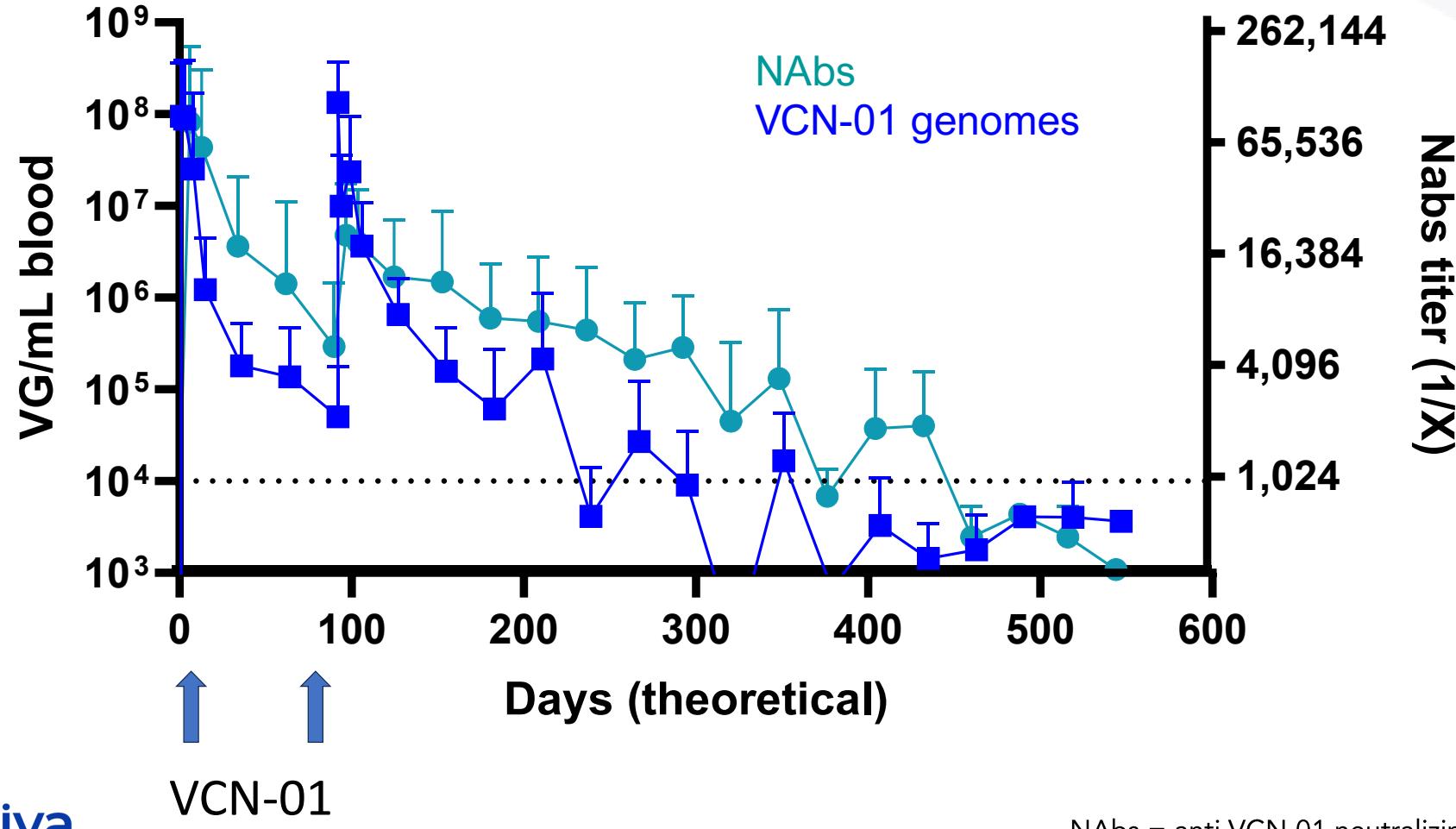
²Compares patients in ARM II who received a second dose of VCN-01 followed 1-week later by cycle 4 of SoC to patients in ARM I who started cycle 4 of SoC. 70.8% of patients in the VCN-01+SoC arm received 2 doses of VCN-01.


INCREASED PROGRESSION-FREE SURVIVAL IN VCN-01+SOC ARM

Greater PFS improvement with two VCN-01 doses

DURATION OF RESPONSE DOUBLED IN VCN-01+SOC ARM

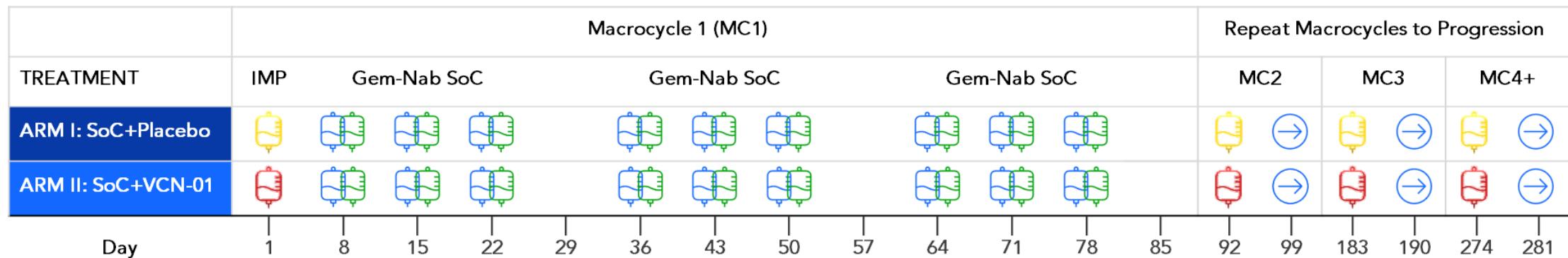
Increased response rate with two VCN-01 doses



Objective Response Rates (ORR)¹

N (%)	Main Analysis (FAS) ¹		Subgroup (2 Doses VCN-01) ²	
	SoC	VCN-01 + SoC	SoC C4+	2*VCN-01 + SoC
Patients	48	48	29	34
CR	0	1	0	1
PR	15	18	14	18
ORR	15 (31.3%)	19 (39.6)	14 (48.3%)	19 (55.9%)
		p=0.314		p=0.533

VIRAGE BIOLOGICAL DATA SUPPORT REPEAT DOSING


Circulating viral genomes and NAbs similar after both VCN-01 doses

PROPOSED PHASE 3 TRIAL IN PANCREATIC CANCER

Repeated VCN-01 dosing intended to improve outcomes

- Patients with newly-diagnosed metastatic pancreatic ductal adenocarcinoma (first line)
- Multicenter, double-blinded, placebo-controlled, randomized (1:1), controlled trial
- Repeated 3-month “macrocycles” comprising 1 IV dose of VCN-01 (1×10^{13} vp) or placebo administered 7-days prior to 3 x 28-day cycles of gemcitabine/nab-paclitaxel SoC
- Primary endpoint: overall survival
- Adaptive design with an initial sample size of ~450 patients

PURSUING REGULATORY AGREEMENT ON PHASE 3 DESIGN

- Positive Scientific Advice from European Medicines Agency (EMA)
 - Agreed on proposed inclusion/exclusion criteria, primary endpoint (OS), and secondary endpoints (including PFS, DoR, and patient reported outcomes)
 - Agreed on proposed sample size and adaptive trial design with two interim analyses
 - Agreed that a single study, if successful, could support a marketing authorization
 - Recognized the survival benefit of the second VCN-01 dose in the VIRAGE trial; suggested potentially more frequent dosing
 - Requested additional VCN-01 genome and anti-VCN-01 Ab measurements for the additional doses
- FDA End-of-Phase 2 Meeting Requested
 - Meeting to review proposed Phase 3 trial design anticipated Q1 2026

VCN-01 ADDITIONAL CLINICAL ACTIVITIES

- Potential **Phase 1b study in PDAC** to explore more frequent VCN-01 dosing (q2 months) to potentially improve outcomes
 - Builds on EMA suggestion and recognition of the benefit of multiple VCN-01 doses
 - VCN-01 dosing q2 months means at least two doses could be administered to most patients (PFS 3.5-6.5 months in VIRAGE study)
 - Small study (n=6-10) could be conducted with existing cash and available clinical drug product
- Planning a potential **pivotal trial in retinoblastoma (Rb)**
 - Intravitreal VCN-01 plus topotecan in children with refractory vitreous seeds
 - Extremely rare pediatric disease may permit a relatively small, single-arm study
 - Rare Pediatric Disease designation may enable access to monetizable Priority Review Voucher
 - No prior approvals in Rb, pursuing close collaboration with regulators

THERIVA OV PIPELINE DISCOVERY AND DEVELOPMENT

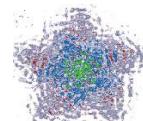
Advancing founders' decades of world leading OV innovation

Common Features

Clinically-tested Adenovirus Expressing PH20 Hyaluronidase to Degrade Tumor Stroma

+

Additional Transgene Payloads to Enhance Anti-tumor Immune Response and Potentially Enable **Single-Agent** therapy


+ / -

Albumin Shield™ To Prevent Neutralization by Anti-viral Antibodies and Facilitate IV Multidosing

Product Specific Features

VCN-01 Hyaluronidase alone

VCN-12 Hyaluronidase + Toxins

VCN-11 Hyaluronidase + Albumin Shield

2026 PROJECTED MILESTONES

VCN-01 FDA EOP2
Phase 3 study design

VIRAGE AACR Presentation
Abstract submitted

VCN-01 PDAC Phase 1
More frequent dosing, PK/PD

VCN-01 PDAC Phase 3
If funding obtained

VCN-01 Rb FDA Meeting
Review Ph 2-3 study design

Potential Out-license
of Legacy Asset

VCN-12 candidate
*Next generation OV**

VCN-01 CMC Scale-up
If funding obtained

SYN-004 in allo-HCT
Initiate final Phase 1b/2a cohort^t

Partnering and Strategic Activities

Q1 2026

Q2 2026

Q3 2026

Q4 2026

APPENDIX

SEASONED LEADERSHIP TEAM

Steven Shallcross

Chief Executive Officer, Chief Financial Officer

Served as the Company's CEO since 2018 and CFO since joining the Company in 2015

Deep operational, financial and international biotech industry experience and proven track record of leading the financial development and strategy in the public sector

Senseonics

VANDA
PHARMACEUTICALS INC.

Innocolle

nub
THERAPEUTICS

Theriva
BIOLOGICS

Manel Cascalló PhD

General Director, EU Subsidiary

Expertise in oncolytic adenovirus clinical development, received several patents for the use of adenovirus as antitumoral agents and authored many peer-reviewed scientific publications

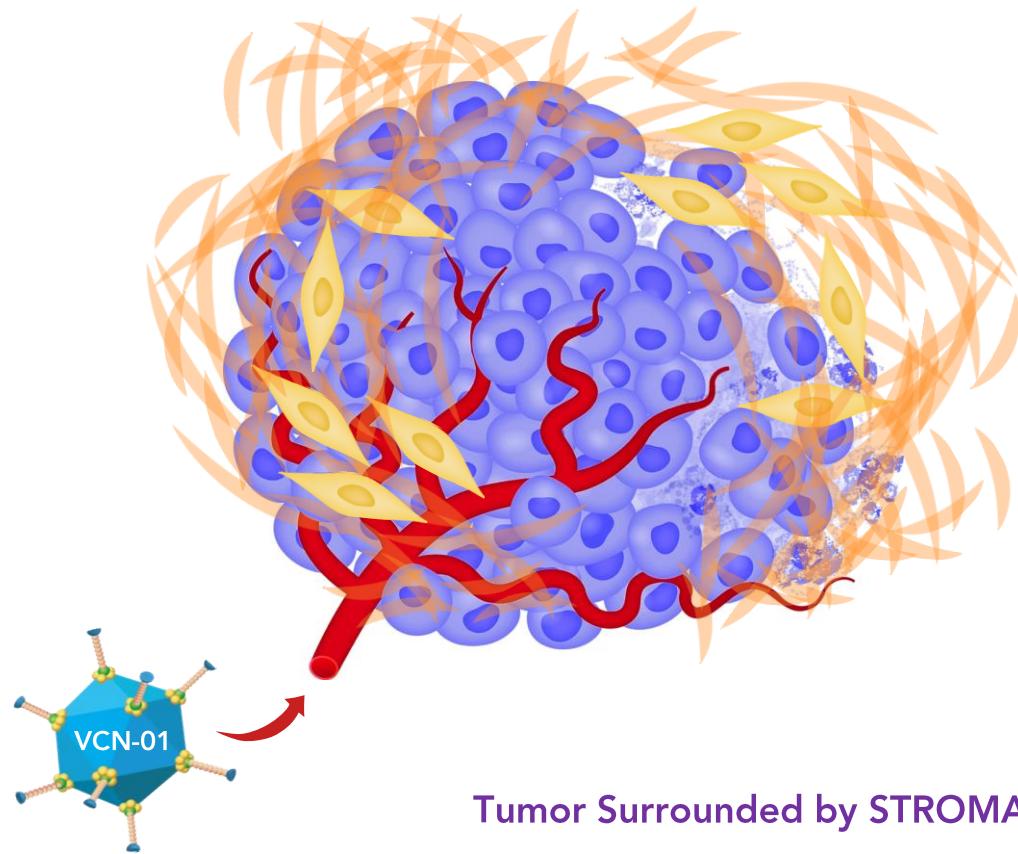
Deep regulatory experience and serves as an independent expert for the European Medicines Agencies (EMA)

Vince Wacher PhD

Head Corporate Development

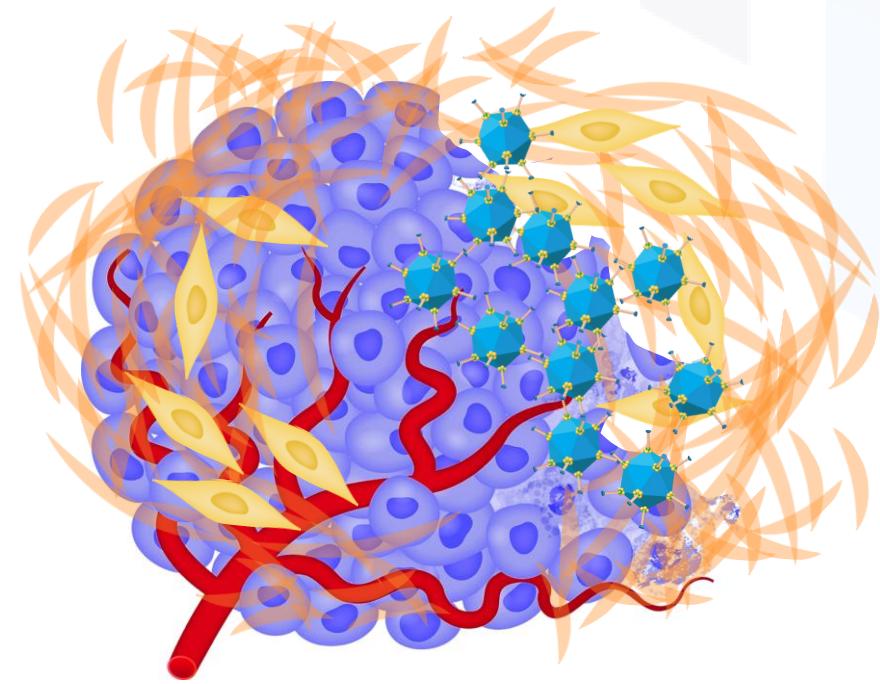
Nearly 30 years leading corporate strategy, partnering, research, clinical development, and intellectual property programs for start-ups, small companies, and new business units within large companies

Development experience across oncology, infection, GI, metabolic diseases, transplantation, and drug delivery


EASTMAN

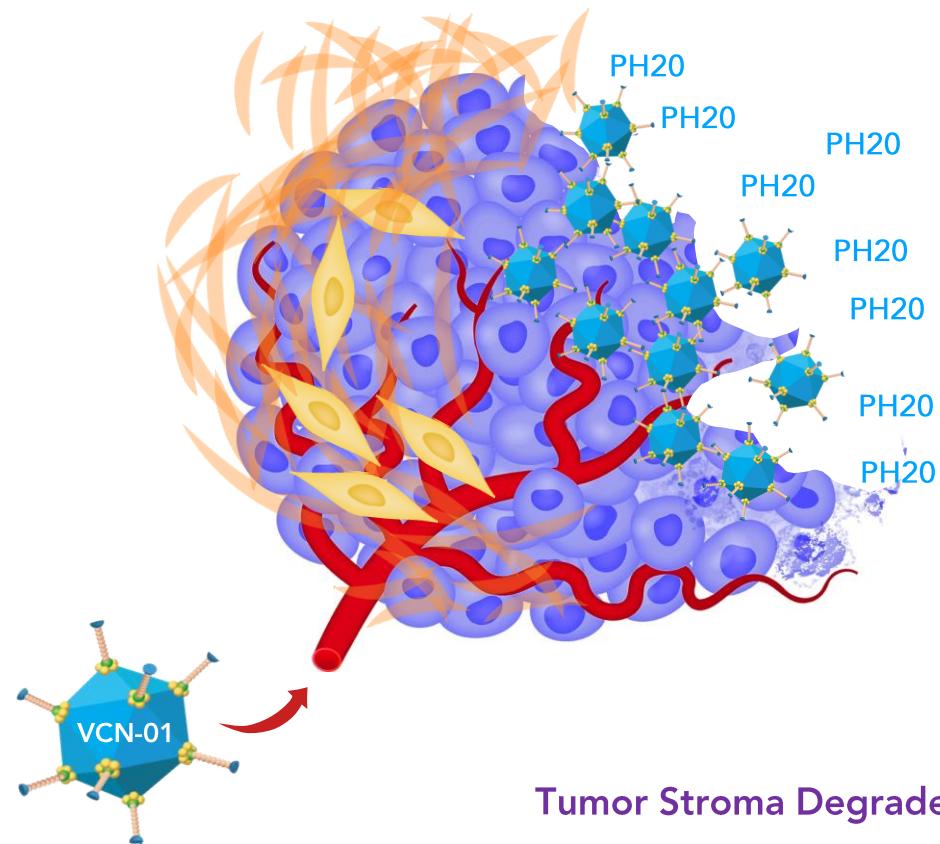
Verva
Pharmaceuticals

VCN-01 IS A UNIQUELY ENGINEERED HUMAN ADENOVIRUS 5

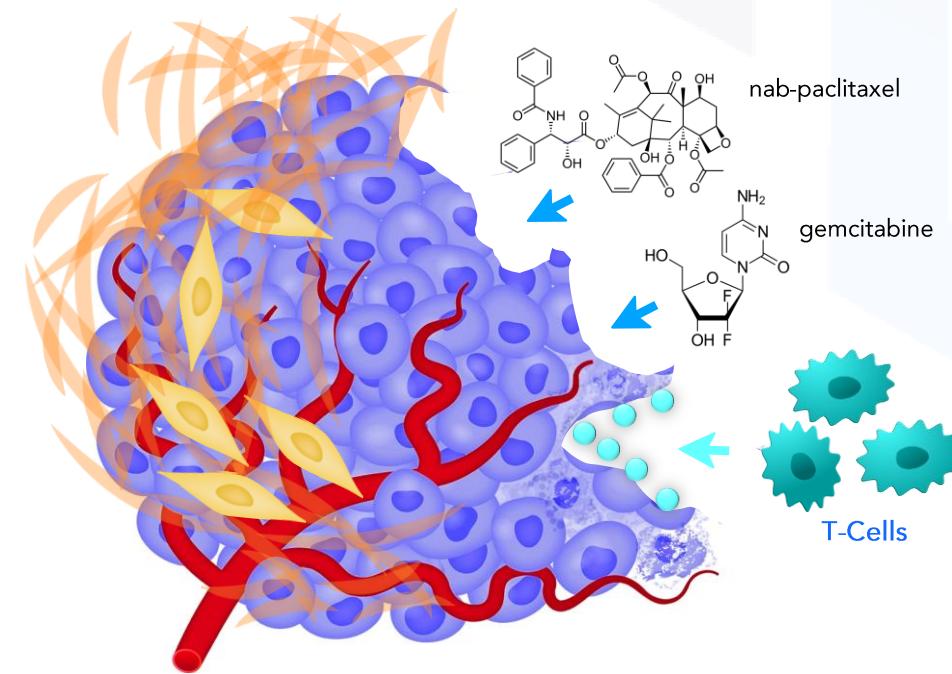

1

SYSTEMIC delivers VCN-01 to the primary tumor and metastases and detargets the liver

2

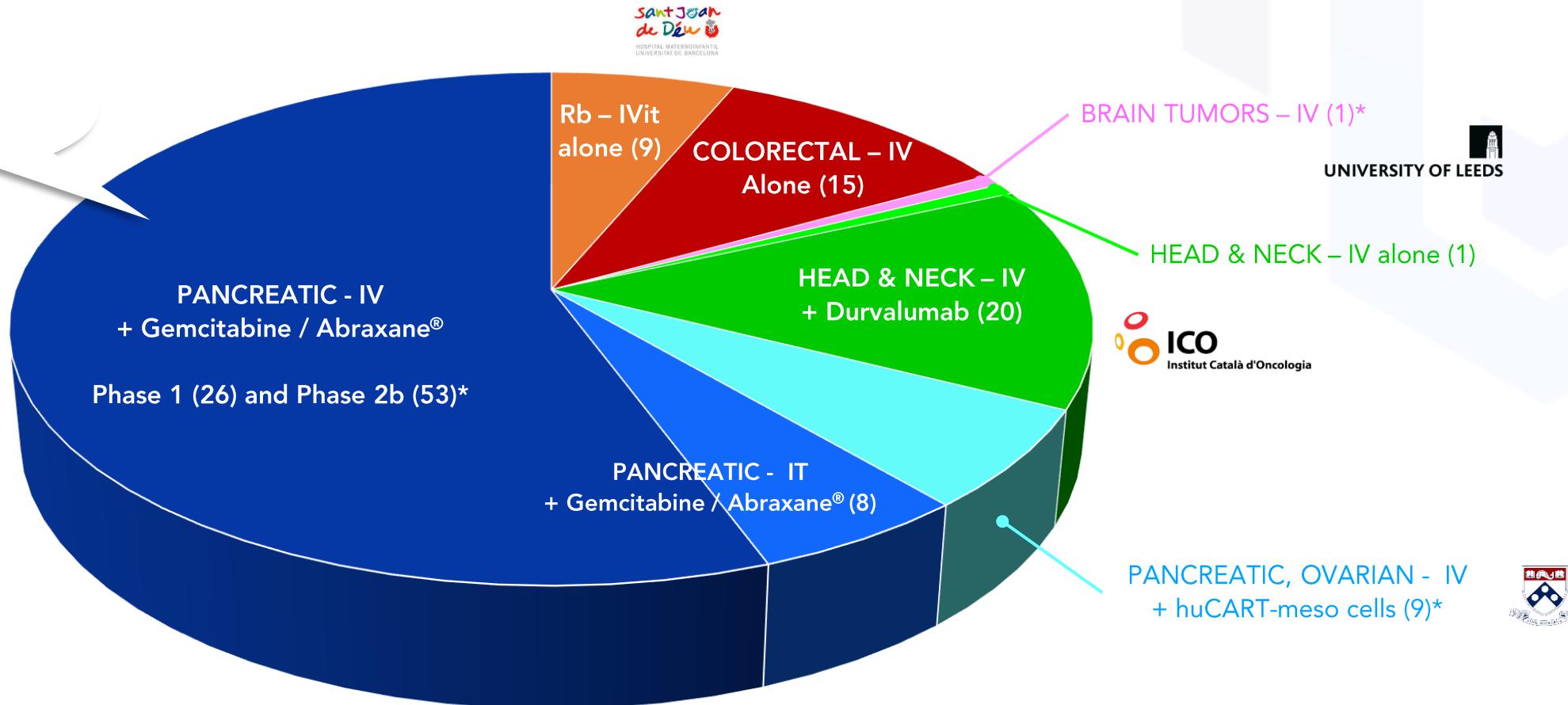

SELECTIVE replication at very high levels lyses tumor cells directly without harming healthy tissues

VCN-01 DESIGNED TO HAVE MULTIPLE ANTI-TUMOR ACTIONS


3

STROMA degradation by PH20 facilitates solid tumor access and destruction by coadministered cancer therapies

4


IMMUNOGENIC actions of VCN-01 turn "cold" tumors "hot" and elicit an anti-tumor immune response

VCN-01 EXTENSIVE CLINICAL EXPERIENCE

142 patients treated with VCN-01 in multiple indications and combinations

Preparing
for Phase 3

(Number of VCN-01 Patients Treated in Parentheses)

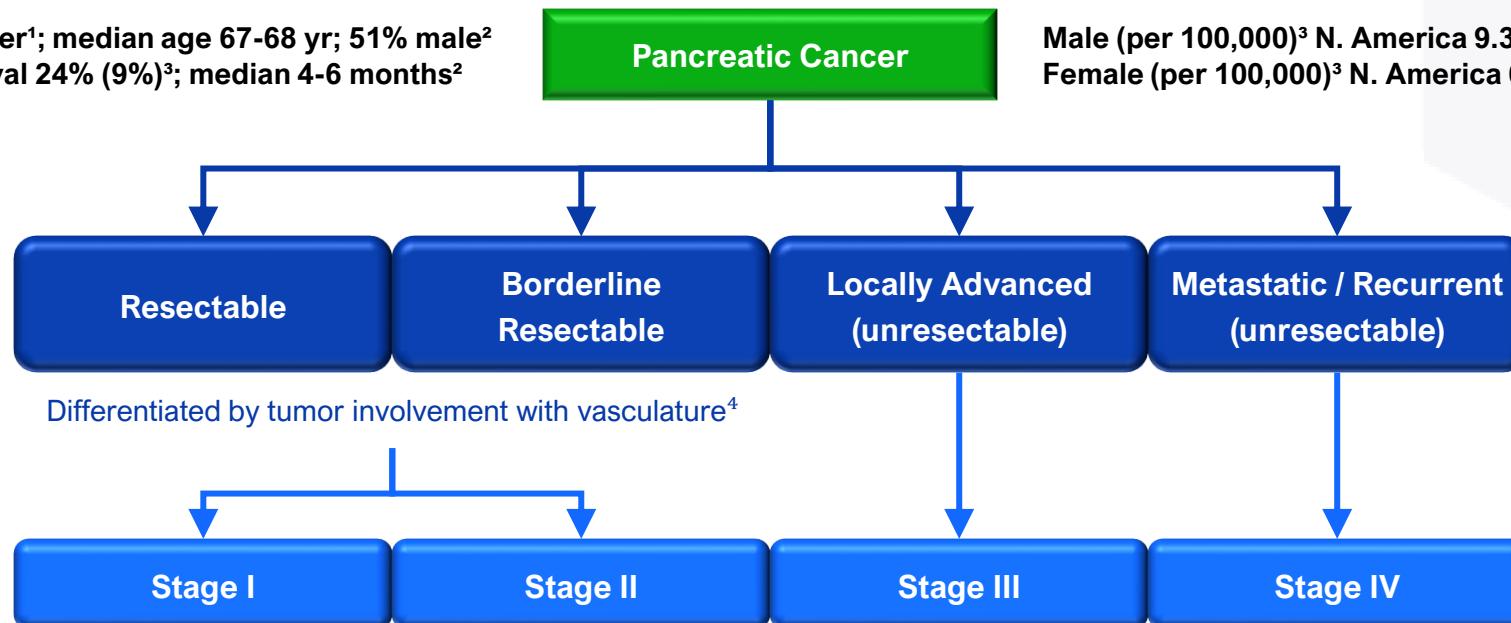
VCN-01 COMPARED TO OTHER ONCOLYTIC VIRUSES IN DEVELOPMENT

COMPANY	THERIVA BIOLOGICS	CG ONCOLOGY	GENELUX	ONCOLYTICS BIOTECH	REPLIMMUNE
Ticker	NYSE MKT: TOVX	NASDAQ: CGON	NASDAQ: GNLX	NASDAQ:ONCY	NASDAQ: REPL
Market Cap¹	\$3.7M	\$2.07B	\$102.3M	\$48.5M	\$753.9M
Product	VCN-01	Cretostimogene grenadenorepvec	Olvi-Vec	Pelareorep	RP1, RP2
Virus	Adenovirus 5	Adenovirus 5	Vaccinia	Reovirus	Herpes Simplex
Type	DNA	DNA	DNA (enveloped)	RNA	DNA (enveloped)
Tumor selectivity mechanism	Selective replication (Rb-E2F dysfunction)	Selective replication (Rb-E2F dysfunction)	Low tumor IFN TK deletion	Low tumor IFN Ras activation	Low tumor IFN ICP34.5 deletion
Therapeutic Transgene	PH20	GM-CSF	GM-CSF, GALV-GP R(-), anti-CTLA-4
Lead Indication (Ph)	Pancreatic (2b)	Bladder (3)	Ovarian (3)	Pancreatic, GI (2b)	Melanoma (3)
Route	IV	IVESIC	IP	IV	IT
Dose	1x10 ¹³ vp ²	1x10 ¹² vp	3x10 ⁹ pfu	4.5x10 ¹⁰ TCID ₅₀	1x10 ⁷ pfu/mL
Stroma Degrading	Yes	No	No	No	No
Biomarker	PH20	..	β-GAL, β-GLU, GFP

THERIVA OV PORTFOLIO HIGHLIGHTS

Multiple modes of action, indications and combinations

- Highly differentiated OVs designed to have multiple antitumor effects
 - Systemic administration, selective tumor replication, stroma degradation
- Multiple potential value opportunities for lead asset VCN-01
 - Preparing Phase 3 trial with SoC in first-line metastatic PDAC; planning Phase 2/3 trial in retinoblastoma
 - Phase 1 data support additional indications (HNSCC, CRC) and diverse combinations (chemotherapy, CPI, CAR-T)
- Regulatory status expected to facilitate VCN-01 development
 - PDAC: Orphan Drug Designation (FDA, EMA), Fast Track designation (FDA)
 - Retinoblastoma: Orphan Drug Designation (EMA; FDA); Rare Pediatric Disease Designation (FDA: potential access to priority review voucher)
- Leading OV discovery engine advancing diverse new product candidates
 - Potent tumor killing with potential single agent efficacy

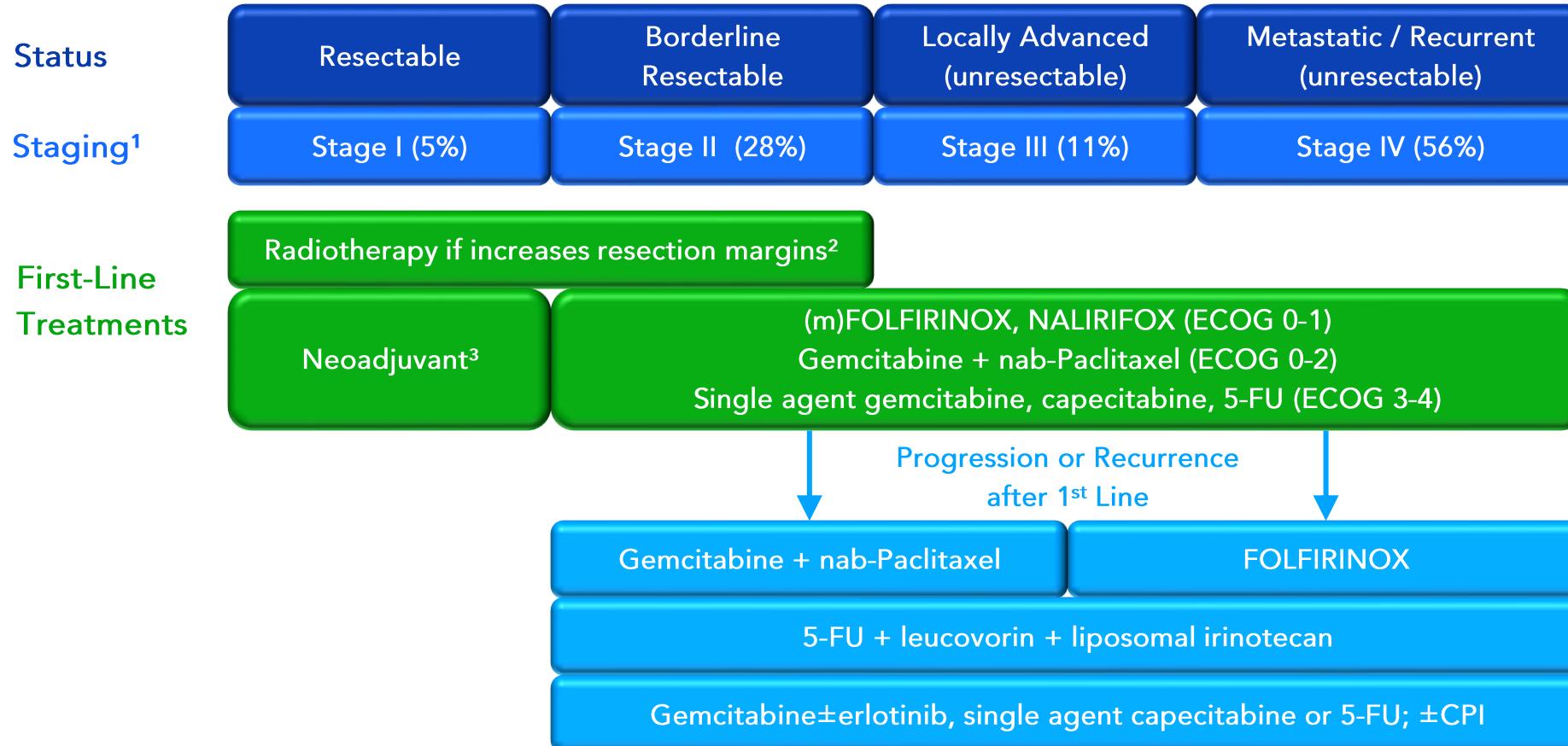


VCN-01 IN PANCREATIC CANCER

PANCREATIC CANCER STAGING

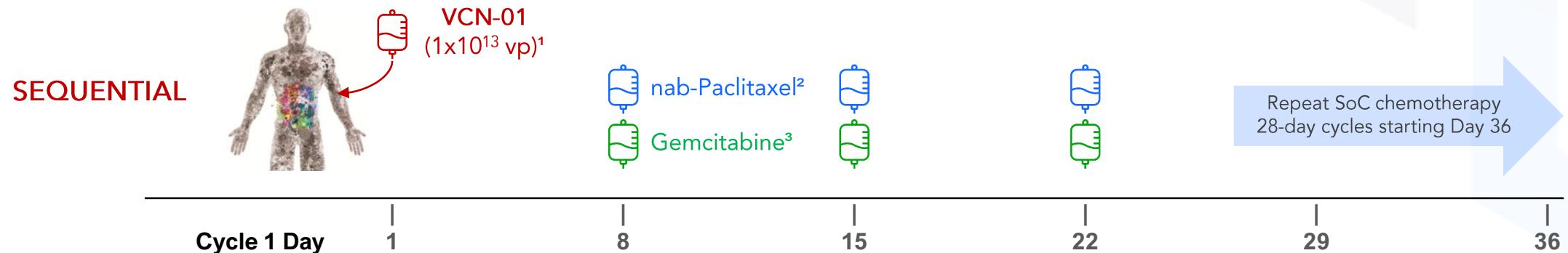
PDAC >90% pancreatic cancer¹; median age 67-68 yr; 51% male²
1-year (5-year) overall survival 24% (9%)³; median 4-6 months²

Male (per 100,000)³ N. America 9.3; W. Europe 9.9; E. Asia 7.0
Female (per 100,000)³ N. America 6.9; W. Europe 7.4; E. Asia 4.8



AJCC Stage	IA	IB	IIA	IIB	III	IV
T-N-M ⁵	T1 N0 M0	T2 N0 M0	T3 N0 M0	T1-3 N1 M0	T1-3 N2 M0 T4 NX-2 M0	TX-4 NX-2 M1
Median Age, yr (range) ⁶	66 (30-88)	66 (31-89)	68 (31-93)	66 (30-95)	67 (31-94)	67 (30-95)
Male (Female), % ⁶	51 (49)	48 (52)	50 (50)	51 (49)	50 (50)	54 (46)
Proportion of PDAC, % ²	1.3%	4.4%	11.5%	16.3%	10.6%	56.0%
5-Year Survival, % ²	31.7%	11.8%	9.0%	8.7%	1.9%	0.5%
Pancreas Head, % ⁶	61%	58%	77%	85%	75%	55%

¹PDAC pancreatic ductal adenocarcinoma. Cancers in the pancreas head (~70%) are diagnosed earlier than cancers in the body or tail (each ~15%), which have a worse prognosis, Sarantis (2020) *World J Gastrointest Oncol* **12**:173-181. ²Bengtsson (2020) *Sci Rep* **10**:16425.


³GLOBOCAN 2020 survey of persons 0-74 years. Ushio (2021) *Diagnostics* **11**:562. ⁴Toesca (2018) *Int J Radiation Oncol Biol Phys* **100**:1155-1174. ⁵American Joint Committee on Cancer Tumor size, Nodal involvement, Metastasis. ⁶Yu (2015) *Gut* **64**:1783-9.

PANCREATIC CANCER CURRENT TREATMENTS

PREFERRED VCN-01 DOSING REGIMEN ESTABLISHED IN PHASE 1

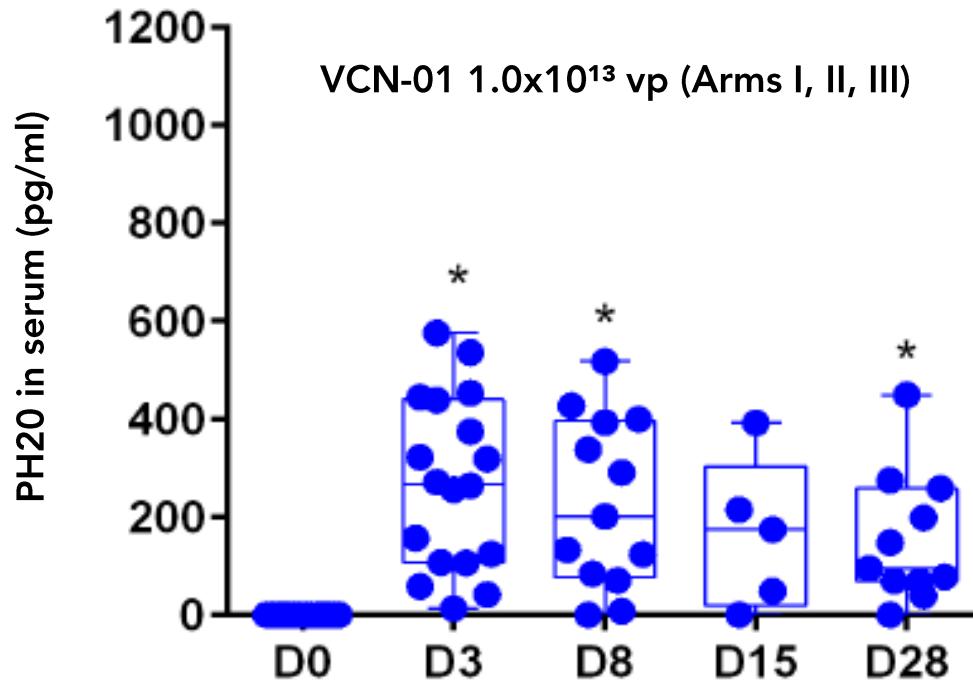
Dose escalation in patients with metastatic pancreatic cancer

Encouraging clinical profile

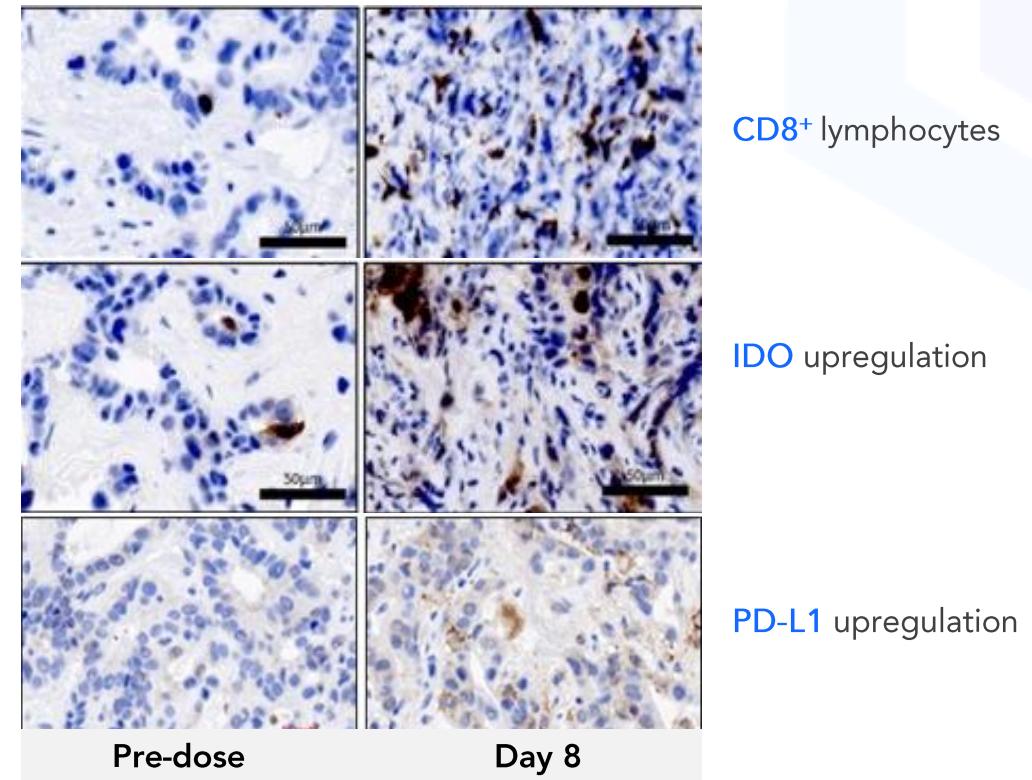
Primary AEs fever, flu-like illness, reversible increase in liver enzymes

Survival and response rates better than published results for gemcitabine/nab-paclitaxel SoC

Clinical evidence of proposed MOA


VCN-01 viral genomes and increased immune markers detected in tumor biopsies

VCN-01 tumor penetration and replication indicated by persistent systemic PH20


CLINICAL DATA SUPPORT VCN-01 MODE-OF-ACTION

Overcomes Neutralizing Antibodies and remodels the tumor matrix and turns “cold” tumors “hot”

Persistent replication*: PH20 levels in patient sera indicate sustained VCN-01 activity in tumors

Immune markers upregulated in biopsies of **hepatic metastases***

VIRAGE ENROLLMENT

Parameter	Spain	USA	Total
Sites Open	10	7	17
Screened	131	40	171
Screen Failure	42 (32%)	17 (43%)	59 (35%)
Randomized	89	23	112
SoC	44	11	55
VCN-01 + SoC	45	12	57
Treated*			
SoC	41	7	48
VCN-01 + SoC	39	9	48

Standard of care (SoC) is gemcitabine / nab-paclitaxel chemotherapy in repeated 28-day cycles

*Patients received at least one dose of SoC in each arm and comprise the **Full Analysis Set**

Five (5) additional patients received one dose of VCN-01 but no doses of SoC and are included in the Safety Population

VIRAGE TREATMENT EMERGENT ADVERSE EVENTS

VCN-01 related events occurring in $\geq 5\%$ of patients

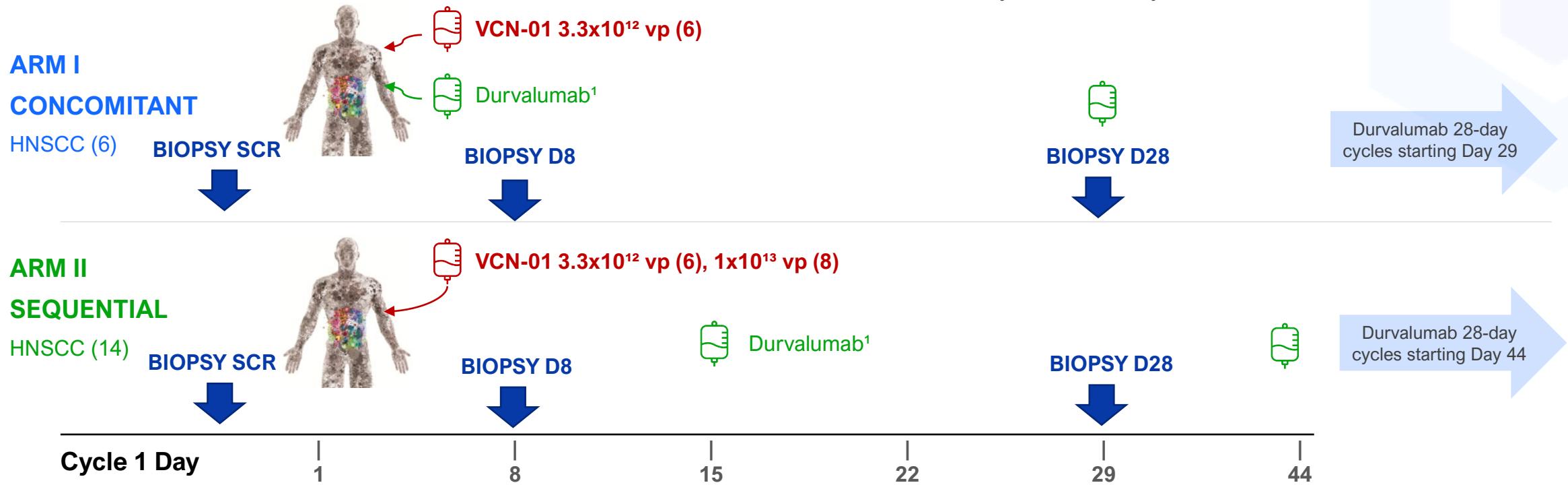
Preferred Term – No. Patients (%) ^{a,b}	All Grades		Grade 3-4	
	First Dose (n=53)	Second Dose (n=36)	First Dose (n=53)	Second Dose (n=36)
Pyrexia	31 (58.5%)	19 (52.7%)	1 (1.9%)	-
Nausea	16 (30.2%)	6 (16.6%)	-	-
Asthenia	15 (28.3%)	4 (11.1%)	1 (1.9%)	1 (2.8%)
Vomiting	14 (26.4%)	9 (25.0%)	-	-
Aspartate aminotransferase increased	10 (18.9%)	1 (2.7%)	5 (9.4%)	-
Alanine aminotransferase increased	9 (16.9%)	1 (2.7%)	4 (7.5%)	-
Influenza like illness	9 (16.9%)	1 (2.7%)	7 (13.2%)	-
Transaminases increased	8 (15.1%)	2 (5.5%)	4 (7.5%)	-
Platelet count decreased/Thrombocytopenia	7 (13.2%)	1 (2.7%)	1 (1.9%)	-
Decreased appetite	7 (13.2%)	1 (2.7%)	-	-
Diarrhea	7 (13.2%)	3 (5.5%)	-	-
Fatigue	5 (9.4%)	-	-	-
Chills	5 (9.4%)	7 (19.4%)	-	-
Lymphocyte count decreased	4 (7.5%)	1 (2.7%)	3 (5.7%)	-
Gamma-glutamyl transferase increased	4 (5.7%)	-	3 (5.7%)	-
Anemia	3 (5.7%)	-	1 (1.9%)	-
Cytokine release syndrome	3 (5.7%)	2 (5.5%)	-	-
				Additional Grade 3/4 AEs occurring <5%
				Treatment-induced liver injury 2 (3.8%)
				Neutrophil count decreased 1 (1.9%)
				Lipase increased 1 (1.9%)
				Alkaline phosphatase increased 1 (1.9%)
				Neutropenia 1 (1.9%)
				Hypotension 1 (1.9%)

VIRAGE SAFETY REVIEW BY INDEPENDENT DMC

- VIRAGE clinical data was reviewed on two occasions by an independent Data Monitoring Committee (DMC) who noted the following:
 - Intravenous VCN-01 was well tolerated in patients treated in this study
 - The most common VCN-01 related AEs (pyrexia, flu-like illness, vomiting, nausea, and elevated transaminases) were transient and reversible.
 - AEs were observed to be less frequent and of reduced CTCAE grade after the second VCN-01 dose compared to the first VCN-01 dose
 - The overall type and number of AEs in the VCN-01+SoC treatment group was as expected for the pancreatic cancer population, the duration of treatment, and the administration of an oncolytic virus

VIRAGE COMPARED TO NALIRIFOX NAPOLI 3

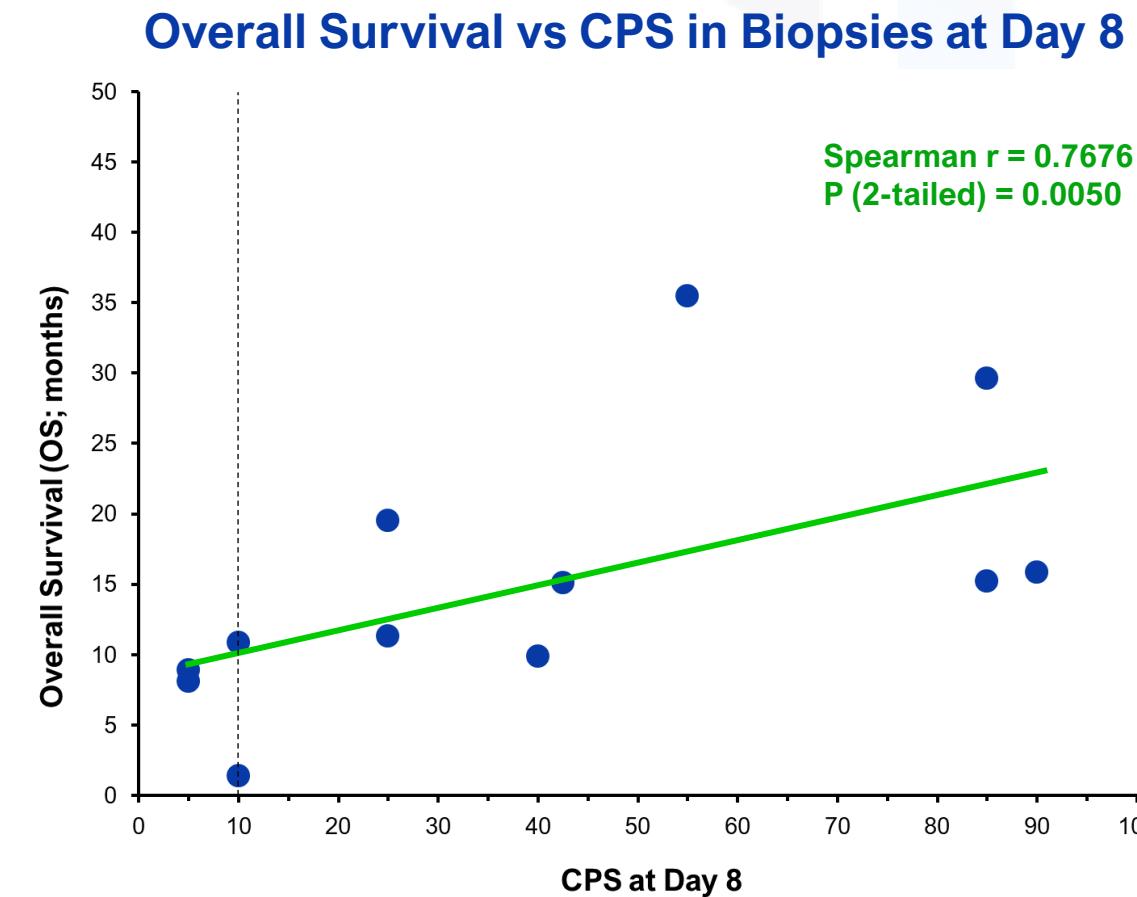
	Statistics	VIRAGE		NAPOLI 3 ¹	
Treatment Arm		VCN-01+Gem/Nab	Gem/Nab	NALIRIFOX	Gem/Nab
Age (years)	n	48	48	383	387
	Median (range)	66.0 (41-86)	68.5 (52-85)	64 (20-85)	65 (36-82)
Sex					
Female	n (%)	25 (52.1)	26 (54.2)	179 (46.7)	157 (40.6)
Male	n (%)	23 (47.9)	22 (45.8)	204 (53.3)	230 (59.4)
ECOG					
0	n (%)	19 (39.6)	17 (35.4)	160 (41.8)	168 (43.4)
1	n (%)	29 (60.4)	31 (64.6)	222 (57.9)	219 (56.6)
OS (months)	Median [95% CI]	10.8 [7.4-15.8]	8.6 [6.9-11.6]	11.1 [10.0-12.1]	9.2 [8.3-10.6]
	HR [95% CI], p-value	0.57 [0.34-0.96], 0.0546	..	0.83 [0.70-0.99], 0.036	..
PFS (months)	Median [95% CI]	7.0 [4.8-11.2]	4.6 [3.5-6.5]	7.4 [6.0-7.7]	5.6 [5.3-5.8]
	HR [95% CI], p-value	0.55 [0.34-0.88], 0.0105	..	0.69 [0.58-0.83], <0.0001	..
DoR (months)	Median [95% CI]	11.2 [7.4-NE]	5.4 [2.0-6.8]	7.3 [5.8-7.6]	5.0 [3.8-5.6]
	HR [95% CI], p-value	0.22 [0.08-0.62], 0.0035	..	0.67 [0.48-0.93], n/a	..


VCN-01 IN HEAD & NECK CANCER

VCN-01 IV + ANTI-PD-L1 PHASE 1 TRIAL in HNSCC

Multicenter, open-label, dose escalation study (NCT03799744)

- ✓ Single IV doses of VCN-01 combined with anti-PD-L1
- ✓ Patients with metastatic squamous cell carcinoma of the head & neck previously **REFRACTORY** to anti-PD(L)1 treatment (R/M HNSCC)
- ✓ Evaluate safety and tolerability, recommended Phase 2 dose


EXTENDED SURVIVAL with VCN-01+DURVALUMAB

Survival correlated with PD-L1 upregulation after VCN-01 treatment

- Higher than expected survival (OS) despite previous anti-PD(L)1 failure

Regimen	Median OS (95% CI), mos	
	3.3×10^{12} vp	1.0×10^{13} vp
Concomitant	10.4 (8.9-NE)	..
Sequential	15.5 (15.1-NE)	17.3 (11.3-NE)

- No correlation of survival with baseline tumor PD-L1 expression (CPS) BUT significant correlation of survival with CPS 8-days after VCN-01 treatment

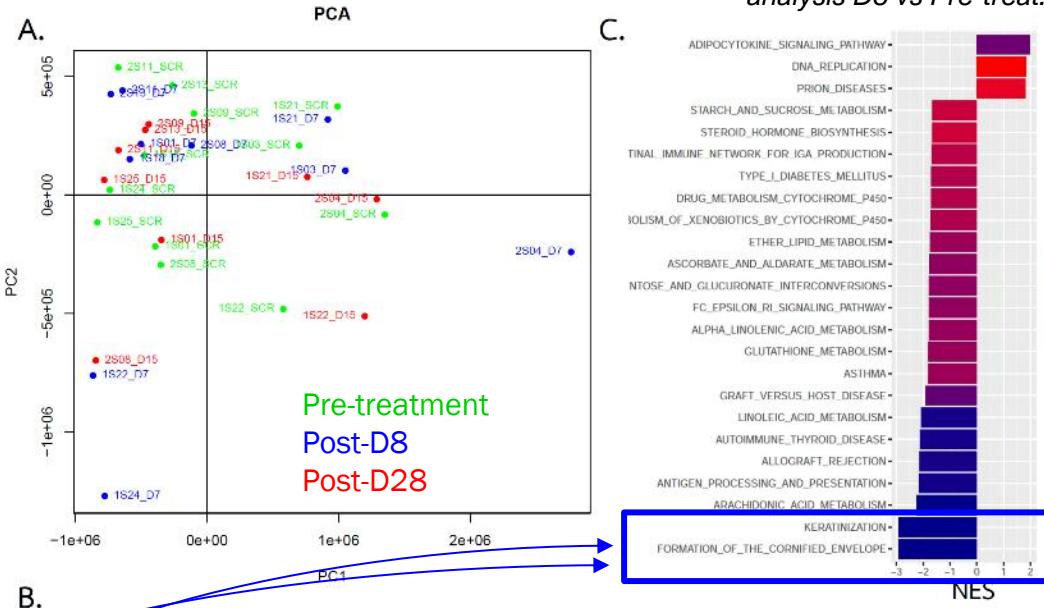
VCN-01 MAY SENSITIZE PATIENTS TO SUBSEQUENT THERAPY

Patients responded to subsequent chemotherapy after progressing with VCN-01 + durvalumab

ARM	ICI Treatment Progression (Pre-trial)	Current Trial			1st Line after Current Trial	2nd Line after Current Trial
		Median OS post-1st ICI	ORR	Median PFS	Median OS	
Concomitant Low (3.3E12vp)	21.6 (19.2-NE)	0/6	1.7 (1.6-NE)	10.4 (8.9-NE)	3/5	1/2
Sequential Low (3.3E12vp)	23.9 (16.6-NE)	1/6	3.7 (2.2-NE)	15.5 (15.1-NE)	3/6	1/6
Sequential High (1E13vp)	21.8 (12.9-NE)	0/6	2.1 (1.4-NE)	17.3 (11.3-NE)	2*/5	1/4

*Complete Responses

AE PROFILE FOR THE COMBINATION OF VCN-01 AND DURVALUMAB


Most common AEs related to IV VCN-01 [NCT03799744]

Adverse Reactions	CTCAE Grade	Arm I - Concomitant (Dose 3,3E12 , n=6) ²		Arm II - Sequential (Dose 3,3E12 , n=6) ³		Arm II - Sequential (Dose 1E13 , n=8) ³	
		Grade 1-2	Grade ≥3	Grade 1-2	Grade ≥3	Grade 1-2	Grade ≥3
Pyrexia		2 (33,0%)	-	5 (62,5%)	-	3 (50%)	-
Influenza like illness		3 (50,0%)	-	3 (37,5%)	2(25%)	2 (33,3%)	-
Asthenia/Fatigue		2 (33,0%)	-	2 (25%)	1 (12,5%)	4 (66,6%)	-
AST increased		4 (66,7%)	1 (16,6%)	2 (25%)	-	-	2 (33,3%)
ALT increased		3 (50,0%)	1 (16,6%)	1 (12,5%)	-	-	2 (33,3%)
Decreased Appetite		1 (16,6%)	-	3(37,5%)	-	2 (33,3%)	-
Lymphocyte count decreased		1 (16,6%)	-	-	3 (37,5%)	-	-
Myalgia		-	-	3(37,5%)	-	1 (16,6%)	-
Hypotension		-	-	2 (25%)	-	1 (16,6%)	-
Chills		1 (16,6%)	-	1(12,5%)	-	1 (16,6%)	-
Vomiting		1 (16,6%)	-	1(12,5%)	-	1 (16,6%)	-
Anemia		2 (33,0%)	-	1(12,5%)	-	1 (16,6%)	-
Nausea		-	-	1(12,5%)	-	1 (16,6%)	-
Headache		-	-	1(12,5%)	-	1 (16,6%)	-
Erythema		1 (16,6%)	-	1(12,5%)	-	-	-
Guillain-Barre Syndrome		-	1 (16,6%)	-	1 (12,5%)	-	-
Hepatic enzymes increased		-	-	-	1 (12,5%)	-	-
GGT Increased		-	-	-	-	-	1 (12,5%)

VCN-01 INDUCES TRANSCRIPTOMIC CHANGES in TUMOR MICROENVIRONMENT

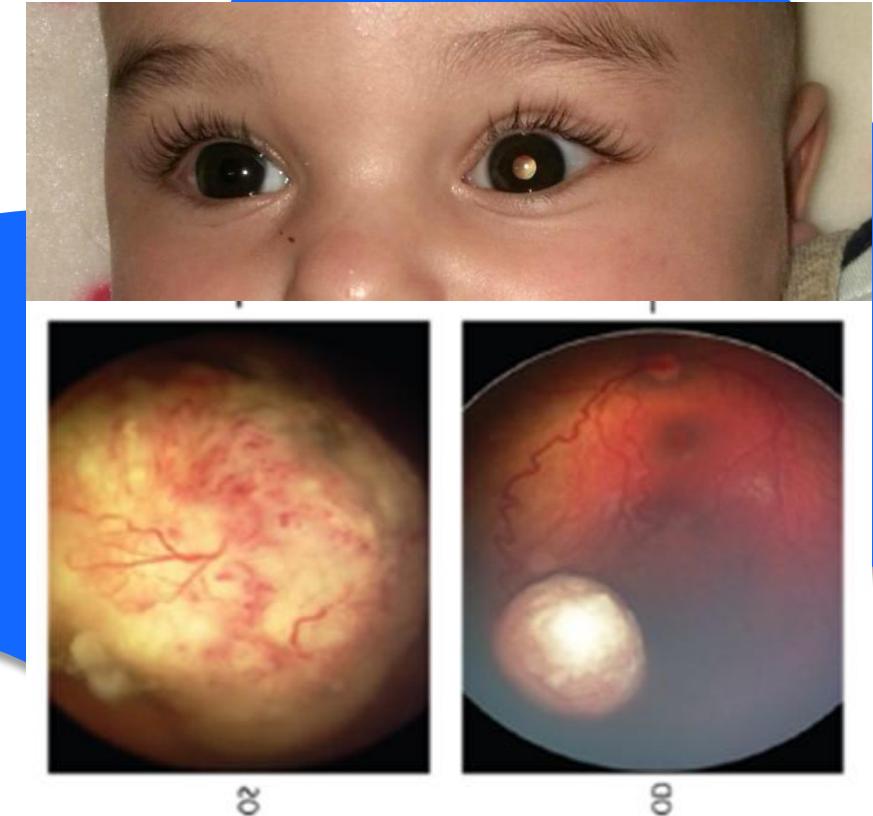
RNAseq Analysis in Clinical Samples from HNSCC Patients [NCT03799744]

Principal Component Analysis¹
including all the Pre- and Post-treatment samples

Sustained differential gene expression profiles associated with downregulation of matrix-related pathways

VCN-01 FINDINGS in R/M HNSCC

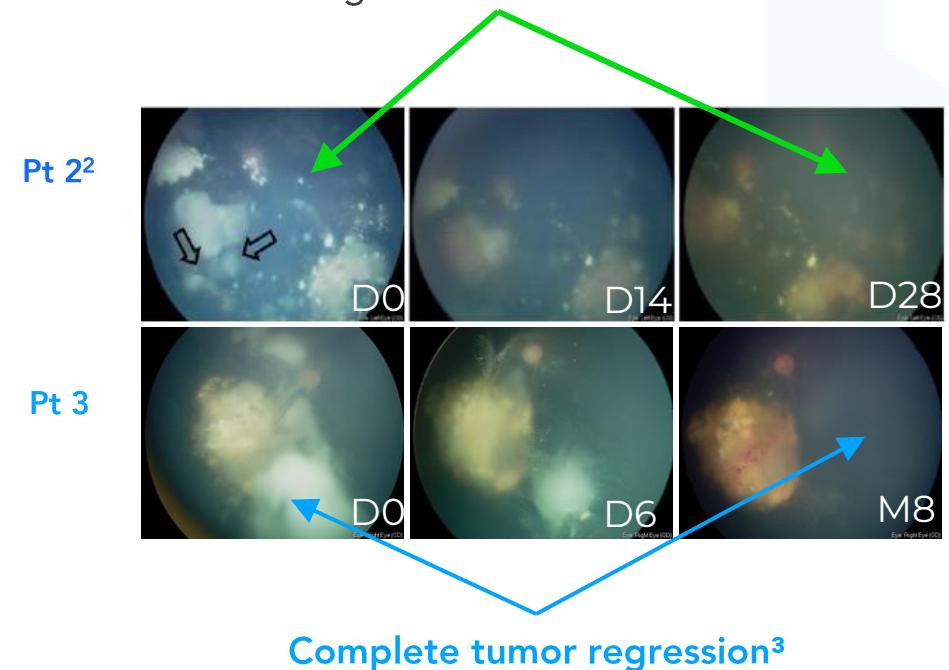
Data support VCN-01 MOA and immune enhancing effects


- VCN-01 has an acceptable adverse event profile when administered prior to durvalumab (Imfinzi®)
- VCN-01 reaches tumors, has sustained replication and PH20 expression
- VCN-01 treatment led to downregulation of tumor matrix genes and increased levels of immune markers in tumor biopsies (CD8, PD-L1, IDO)
- VCN-01-treated patients showed **increased response** to subsequent chemotherapy treatment lines after progressing on this trial

VCN-01 IN RETINOBLASTOMA

RETINOBLASTOMA, A RARE PEDIATRIC MALIGNANCY

- Retinoblastoma (Rb) is an orphan indication that accounts for ~2-3% of all childhood cancers¹
- 200-300 cases each year in the USA, EU²⁻⁴
- VCN-01 selectivity enables development as an intravitreal treatment for Rb patients
- VCN-01 could be used in combination with chemotherapy to potentially improve outcomes
- VCN-01 could be used as a rescue therapy for patients who fail standard therapy



VCN-01 IN RETINOBLASTOMA

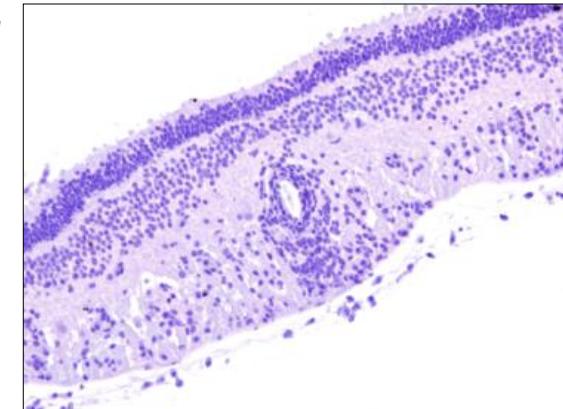
- Single center, open-label, dose escalation study of intravitreal (IVit) VCN-01¹⁻³
 - Children aged 1-12 years (n=9)
 - Retinoblastoma that is recurrent or refractory to chemotherapy and for whom enucleation is the best treatment option
 - VCN-01 doses of 2.0×10^9 vp per eye (n=1) or 2.0×10^{10} vp per eye (n=8) on days 1 and 15
- Promising antitumor activity and appropriate adverse event profile and tolerability at RP2D
 - Reduction of vitreous seeds in 3 patients of 6 evaluable patients
 - Enucleation avoided in 2 patients; low VCN-01 dose and/or damage from prior chemotherapy meant the eye could not be saved in 4 patients
- Earlier VCN-01 intervention anticipated to have better outcomes

Promising Results in Patients Treated with High Dose VCN-01

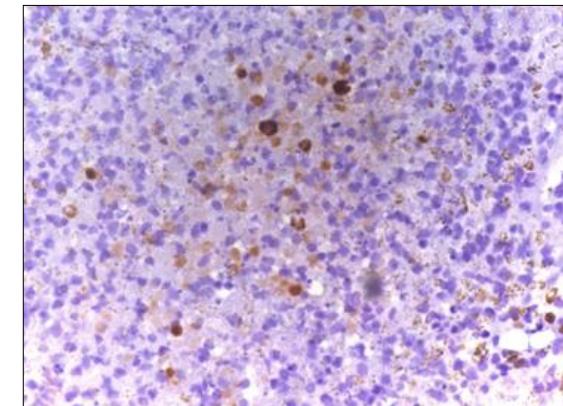
Reduced number and size of tumor vitreous seeds following VCN-01 administration²

Complete tumor regression³

ADVERSE EVENT DATA FOR INTRAVITREAL VCN-01


Two Intravitreal VCN-01 Doses of 2.0×10^9 or 2.0×10^{10} vp per eye¹

Adverse Reaction	Pts	All Grades		Grade ≥ 3	
CTCAE grade	N	n	%	n	%
Uveitis	6	2	33%	2	33%
Eye oedema	6	1	17%	0	0%
Conjunctival hyperemia	6	1	17%	0	0%
Eye inflammation	6	1	17%	0	0%

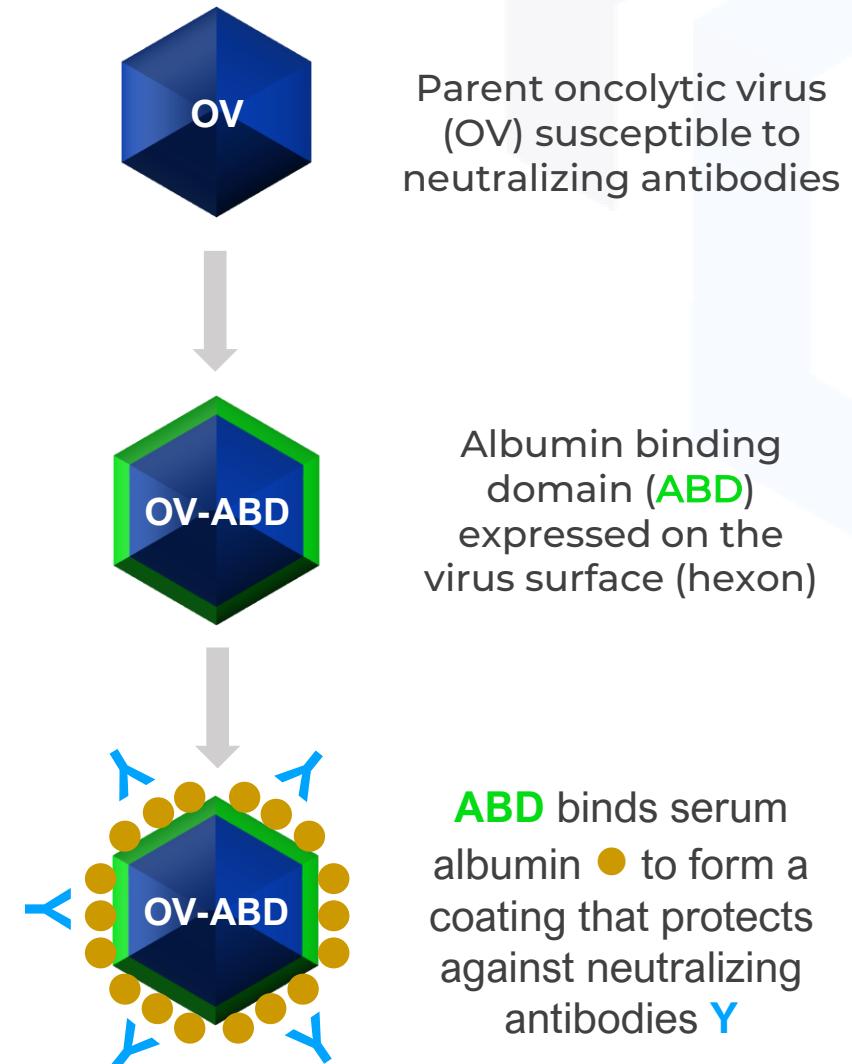

- VCN-01 was reasonably well tolerated after intravitreal administration², although some turbidity and uveitis associated with intravitreal inflammation was observed
- Intravitreal inflammation was managed with local and systemic administration of anti-inflammatory drugs
- VCN-01 induced reversible changes in the electroretinograms but didn't impact visual acuity
- VCN-01 does not replicate in healthy retinal tissue of patients with either somatic or germline Rb mutation³

Selective expression of viral proteins

Conserved retina

Necrotic tumor

VCN-01 DEVELOPMENT IN RETINOBLASTOMA


- Phase 1 ISS Completed H1 2024
 - Initial data demonstrate acceptable adverse event profile and one durable complete response
- Developing a clinical protocol for an open-label, multinational study
 - Refractory retinoblastoma patients with vitreous seeds
 - IVit VCN-01 in combination with topotecan
 - PI Dr. Guillermo Chantada, MD PhD¹
- Status
 - US and EU Orphan Drug Designation
 - Pre-IND meeting with FDA completed Q4 2023
 - Rare Pediatric Disease Designation (potential eligibility for Priority Review Voucher)

VCN-X NEXT GENERATION OV DISCOVERY PLATFORM

ALBUMIN SHIELD™ to ENHANCE OV SYSTEMIC DELIVERY

- Albumin Shield technology protects OVs as they travel to tumors after systemic administration^{1,2}
- Albumin Shield modified OVs bind albumin in the patient's blood to form a protective coating
- Albumin Shield genetic modification allows parent and progeny virus to be albumin coated
- Albumin Shield may enable **multiple IV administrations** for hard-to-treat patients
- Albumin Shield first candidate VCN-11 is being prepared for a potential Phase 1 clinical trial

BIBLIOGRAPHY

THERIVA ONCOLYTIC VIRUSES KEY PUBLICATIONS

Bayo-Puxan N et al. (2006) Role of the putative heparan sulfate glycosaminoglycan-binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting. *J Gen Virol* 87:2487–2495

Bazan-Peregrino M et al. (2021) VCN-01 disrupts pancreatic cancer stroma and exerts antitumor effects. *J ImmunoTher Cancer* 9:e003254.

Garcia-Carbonero R et al. (2019) Poster 5185: Systemic administration of the hyaluronidase-expressing oncolytic adenovirus VCN-01 in patients with advanced or metastatic pancreatic cancer: first-in-human clinical trial. European Society for Molecular Oncology conference ESMO, 29 September 2019.

Garcia-Carbonero R et al. (2022) A phase I, multicenter, open-label study of intravenous VCN-01 oncolytic adenovirus with or without nab-paclitaxel plus gemcitabine in patients with advanced solid tumors *J ImmunoTher Cancer* 10:e003255

Garcia-Carbonero R et al. (2024) VIRAGE: A phase IIb, open-label, randomized study of nab-paclitaxel and gemcitabine plus/minus VCN-01 in patients with metastatic pancreatic cancer. *J Clin Oncol* 42S:TPS4210.

Guedan S et al. (2010) Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. *Mol Ther* 18:1275–1283

Hidalgo M et al. (2019) Poster 5465: Proof of concept clinical study by EUS-guided intratumor injection of VCN-01, an oncolytic adenovirus expressing hyaluronidase in patients with pancreatic cancer. European Society for Molecular Oncology conference ESMO, 28 September 2019.

Jove M et al. (2022) Poster 1231P: Phase I study to evaluate the safety, tolerability, and efficacy of VCN-01 in combination with durvalumab (MEDI4736) in subjects with recurrent/metastatic squamous cell carcinoma of the head and neck (R/M HNSCC) *Ann Oncol.* 33:S1112. European Society for Molecular Oncology conference ESMO 2022, 10 September 2022

Kiyokawa M et al. (2021) Modification of extracellular matrix enhances oncolytic adenovirus Immunotherapy in glioblastoma. *Clin Cancer Res* 27:889-902

Martínez-Vélez N et al. (2019) The oncolytic adenovirus VCN-01 as therapeutic approach against pediatric osteosarcoma. *Clin Cancer Res* 22:2217-25

Mato-Berciano A et al. (2021) Oncolytic adenovirus with hyaluronidase activity that evades neutralizing antibodies: VCN-11. *J Control Rel* 332:517-528

Pascual-Pasto G et al. (2019) Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. *Sci Transl Med* 11:eaat9321

Pascual-Pasto G et al. (2021) Presentation: VCN-01 is an encouraging therapy against retinoblastoma. International Oncolytic Virus Conference IOVC2021, 07 November 2021, Sedona, AZ.

Rodríguez-García A et al. (2015) Safety and efficacy of VCN-01, an oncolytic adenovirus combining fiber HSG-binding domain replacement with RGD and hyaluronidase expression. *Clin Cancer Res* 21:1406-18

Rojas J et al. (2012) Improved systemic antitumor therapy with oncolytic adenoviruses by replacing the fiber shaft HSG-binding domain with RGD. *Gene Ther* 19:453–457

Rojas J et al. (2010) Minimal RB-responsive E1A promoter modification to attain potency, selectivity, and transgene-arming capacity in oncolytic adenoviruses. 2010) *Mol Ther* 18:1960–1971

Rojas L et al. (2016) Albumin-binding adenoviruses circumvent pre-existing neutralizing antibodies upon systemic delivery. *J Control Rel* 237:78–88

PANCREATIC CANCER REFERENCES

DESCRIPTION, CLASSIFICATION, STAGING, STROMA

Balachandran VP et al. (2019) Broadening the impact of immunotherapy to pancreatic cancer: challenges and opportunities. *Gastroenterology* 156:2056-72

Christenson ES et al. (2020) Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: a bright future. *Lancet Oncol* 21:e135-e145

Orth M et al. (2019) Pancreatic ductal adenocarcinoma: biological hallmarks, current status, and future perspectives of combined modality treatment approaches. *Radiation Oncol* 14:141

Placencio-Hickok VR et al. (2022) Hyaluronan heterogeneity in pancreatic ductal adenocarcinoma: primary tumors compared to sites of metastasis. *Pancreatology* 22:92-97

Sarantis P et al. (2020) Pancreatic ductal adenocarcinoma: treatment hurdles, tumor microenvironment and immunotherapy. *World J Gastrointest Oncol* 12:173-181

Tahkola K et al. (2021) Stromal hyaluronan accumulation is associated with low immune response and poor prognosis in pancreatic cancer. *Sci Rep* 11:12216

Yu J et al. (2015) Time to progression of pancreatic ductal adenocarcinoma from low-to-high tumour stages. *Gut* 64:1783-9

INCIDENCE

Bengtsson A et al. (2020) The actual 5-year survivors of pancreatic ductal adenocarcinoma based on real-world data. *Sci Rep* 10:16425.

Carioli G et al. (2021) European cancer mortality predictions for the year 2021 with focus on pancreatic and female lung cancer. *Ann Oncol* 32:478.

da Costa WL et al. (2020) Trends in the incidence of pancreatic adenocarcinoma in all 50 United States examined through an age-period-cohort analysis. *JNCI Cancer Spectrum* 4:pkaa033

GLOBOCAN International 2020 survey of persons 0-74 years. <https://gco.iarc.fr/today/data/factsheets/cancers/13-Pancreas-fact-sheet.pdf>

Michael N et al. (2019) Timing of palliative care referral and aggressive cancer care toward the end-of-life in pancreatic cancer: a retrospective, single-center observational study. *BMC Palliat Care* 18:13.

Sung H et al. (2021) Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. *CA Cancer J Clin* 71:209–249

Ushio J et al. (2021) Pancreatic ductal adenocarcinoma: epidemiology and risk factors. *Diagnostics* 11:562

TREATMENT

Dotan E et al. (2025) Effect of baseline geriatric and quality of life assessments on treatment outcomes in ECOG-ACRIN EA2186 (GIANT): A randomized phase II study of gemcitabine and nab-paclitaxel compared with 5-fluorouracil, leucovorin, and liposomal irinotecan in older patients with treatment-naïve metastatic pancreatic cancer. *J Clin Oncol* 43S:676

Conroy T et al. (2011) FOLFIRINOX versus Gemcitabine for Metastatic Pancreatic Cancer. *N Engl J Med* 364:1817-25.

Elsayed M et al. (2021) The latest advancement in pancreatic ductal adenocarcinoma therapy: a review article for the latest guidelines and novel therapies. *Biomedicines* 9:389

Tempero MA et al. (2021) NCCN Clinical Practice Guidelines in Oncology. Pancreatic Adenocarcinoma, V2.2021. *J Natl Compr Canc Netw* 19:439-457

Toesca DAS et al. (2018) Management of borderline resectable pancreatic cancer. *Int J Radiation Oncol Biol Phys* 100:1155-74

Vogel A et al. (2016) Efficacy and safety profile of nab-paclitaxel plus gemcitabine in patients with metastatic pancreatic cancer treated to disease progression: a subanalysis from a phase 3 trial (MPACT). *BMC Cancer* 16:817

Von Hoff DD et al. (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. *N Engl J Med* 369:1691-703

Wainberg ZA et al. (2023) NALIRIFOX versus nab-paclitaxel and gemcitabine in treatment-naïve patients with metastatic pancreatic ductal adenocarcinoma (NAPOLI 3): a randomised, open-label, phase 3 trial. *Lancet* 402:1272

RETINOBLASTOMA (Rb) REFERENCES

DESCRIPTION, CLASSIFICATION, STAGING

American Academy of Ophthalmology. EyeWiki®. Retinoblastoma. <https://eyewiki.org/Retinoblastoma>

American Cancer Society. Key statistics for retinoblastoma. <https://www.cancer.org/cancer/retinoblastoma/about/key-statistics.html>

Canturk S et al. (2010) Survival of retinoblastoma in less-developed countries impact of socioeconomic and health-related indicators. *Br J Ophthalmol* 94:1432-6

Fabian ID et al. (2018) Classification and staging of retinoblastoma. *Community Eye Health* 31:11-13

Fabian ID et al. (2020) Global retinoblastoma presentation and analysis by national income level. *JAMA Oncol* 6:685

Tomar AS et al. (2020) Multicenter, international collaborative study for American Joint Committee on Cancer Staging of Retinoblastoma/ Part I: metastasis-associated mortality. *Ophthalmology* 127:1719-32

INCIDENCE

One Retinoblastoma World Map. <https://map.1rbw.org/> (accessed April-November 2021)

Stacey AW et al. (2021) Incidence of retinoblastoma has increased: results from 40 European countries. *Ophthalmology* 128:1369-71

TREATMENT

Abramson DH et al. (2015) Advanced unilateral retinoblastoma: the impact of ophthalmic artery chemosurgery on enucleation rate and patient survival at MSKCC. *PLoS ONE* 10:e0145436

Ancona-Lezama D et al. (2020) Modern treatment of retinoblastoma: a 2020 review. *Indian J Ophthalmol* 68:2356-65

Tomar AS et al. (2021) Global retinoblastoma treatment outcomes. Association with national income level. *128:740-53*

OV COMPANY REFERENCES

CG Oncology CG0070 (cretostimogene grenadenorepvec)

<https://cgoncology.com>

Ramesh N et al. (2006) CG0070, a conditionally replicating granulocyte macrophage colony-stimulating factor-armed oncolytic adenovirus for the treatment of bladder cancer. *Clin Cancer Res* 12:305

Svatek RS et al. (2024) PIVOT-006: A Phase 3, Randomized Study of cretostimogene grenadenorepvec versus Observation for the Treatment of Intermediate Risk NMIBC Following TURBT. Abstract TPS715. Presentation at ASCO Genitourinary Symposium 2024. *J Clin Oncol* 42:TPS715

Tyson M et al. (2023) First Results from BOND-003: Phase 3 study of cretostimogene grenadenorepvec Monotherapy for Patients with BCG Unresponsive High-Risk NMIBC with CIS +/- Papillary (Ta/T1) Tumors. Presentation at Society of Urologic Oncology Annual Meeting SUO 2023.

Uchio EM et al. A phase 3, single-arm study of CG0070 in subjects with non-muscle invasive bladder cancer (NMIBC) unresponsive to Bacillus Calmette-Guerin (BCG). *J Clin Oncol* 40:TPS598

Genelux Corporation Olvi-Vec (GL-ONC1, GLV-1h68, olvimulogene nanivacirepvec)

<https://genelux.com>

Clinicaltrials.gov NCT05281471: Efficacy & safety of Olvi-Vec and platinum-doublet + bevacizumab compared to platinum-doublet + bevacizumab in platinum-resistant/refractory ovarian cancer (OnPrime, GOG-3076)

Holloway RW et al. (2023) Clinical activity of olvimulogene nanivacirepvec–primed immunochemotherapy in heavily pretreated Patients With Platinum-Resistant or Platinum-Refractory Ovarian Cancer. The Nonrandomized Phase 2 VIRO-15 Clinical Trial. *JAMA Oncol.* 9:903

Lin D et al. (2023) Oncolytic virotherapy: basic principles, recent advances and future directions. *Signal Transduct Target Ther.* 8:156

Mell LK et al. (2017) Phase I trial of Intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma. *Clin Cancer Res* 23:5696

Zhang Q et al. (2007) Eradication of solid human breast tumors in nude mice with an intravenously injected light-emitting oncolytic vaccinia virus. *Cancer Res* 67:10038

OV COMPANY REFERENCES

Oncolytics Biotech: Pelareorep (formerly Reolysin®)

<https://oncolyticsbiotech.com>

Arnold D et al. Pelareorep (pela) + atezolizumab (atezo) and chemotherapy in first-line (1L) advanced or metastatic pancreatic ductal adenocarcinoma (PDAC) patients – Results from the GOBLET study. Poster presentation at the European Society for Molecular Oncology Annual Congress ESMO 2023.

Clements D et al. (2014) Reovirus in cancer therapy: an evidence-based review. *Oncolytic Virother* 3:69

Lin D et al. (2023) Oncolytic virotherapy: basic principles, recent advances and future directions. *Signal Transduct Target Ther.* 8:156

Philips MB et al. (2018) Current understanding of reovirus oncolysis mechanisms *Oncolytic Virother* 7:53

Xie R et al. (2023) Effectiveness and safety of pelareorep plus chemotherapy versus chemotherapy alone for advanced solid tumors: a meta-analysis. *Front Pharmacol* 14:1228225

Replimune: RP1,RP2 (vusolimogene oderparepvec)

<https://replimune.com>

Chmielowski et al. (2023) Initial efficacy and safety of RP1 + nivolumab in patients with anti-PD1-failed melanoma from the ongoing phase 1/2 IGNYTE study. Abstract 9609. Poster presentation American Society of Clinical Oncologists Annual Meeting ASCO 2023. *J Clin Oncol* 41:9509

Sacco JJ et al. (2023) Preliminary safety and efficacy results from an open-label, multicenter, phase 1 study of RP2 as a single agent and in combination with nivolumab in a cohort of patients with uveal melanoma. Presentation at the International Congress of the Society for Melanoma Research SMR 2023.

Thomas S et al. (2019) Development of a new fusion-enhanced oncolytic immunotherapy platform based on herpes simplex virus type 1. *J ImmunoTher Cancer* 7:214